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 DISCLAIMER 
 
This report documents version 1.0 of HYDRUS, a software package for simulating water, heat and 
solute movement in two- and three-dimensional variably saturated media. The software has been 
verified against a large number of test cases. However, no warranty is given that the program is 
completely error-free. If you do encounter problems with the code, find errors, or have suggestions 
for improvement, please contact one of the authors at 
 
 
 
  Tel. 1-951-827-7854 (J. Šimůnek) 
  Tel. 1-951-369-4846 (M. Th. van Genuchten) 
  Tel. +420-222-514-225 (M. Šejna) 
  Fax. 1-951-787-3993 
  E-mail Jiri.Simunek@ucr.edu 
   rvang@ussl.ars.usda.gov 
   mireks@pc-progress.cz 
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 ABSTRACT 
 
Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS Software Package for Simulating 
Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated 
Media, Version 1.0, PC Progress, Prague, Czech Republic, 2006. 
 
 This report documents version 1.0 of HYDRUS, a general software package for simulating 
water, heat, and solute movement in two- and three- dimensional variably saturated media. The 
software package consists of the computation computer program, and the interactive graphics-based 
user interface. The HYDRUS program numerically solves the Richards equation for saturated-
unsaturated water flow and the convection-dispersion equation for heat and solute transport. The 
flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport 
equation considers transport due to conduction and convection with flowing water. The solute 
transport equations consider convective-dispersive transport in the liquid phase, as well as diffusion 
in the gaseous phase. The transport equations also include provisions for nonlinear nonequilibrium 
reactions between the solid and liquid phases, linear equilibrium reactions between the liquid and 
gaseous phases, zero-order production, and two first-order degradation reactions: one which is 
independent of other solutes, and one which provides the coupling between solutes involved in 
sequential first-order decay reactions. In addition, physical nonequilibrium solute transport can be 
accounted for by assuming a two-region, dual-porosity type formulation which partitions the liquid 
phase into mobile and immobile regions. Attachment/detachment theory, including the filtration 
theory, is included to simulate transport of viruses, colloids, and/or bacteria. The program may be 
used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated 
porous media. HYDRUS can handle flow regions delineated by irregular boundaries. The flow 
region itself may be composed of nonuniform soils having an arbitrary degree of local anisotropy. 
Flow and transport can occur in the vertical plane, the horizontal plane, a three-dimensional region 
exhibiting radial symmetry about the vertical axis, or fully three-dimensional domain. The water 
flow part of the model can deal with prescribed head and flux boundaries, boundaries controlled by 
atmospheric conditions, free drainage boundary conditions, as well as a simplified representation of 
nodal drains using results of electric analog experiments. The two-dimensional part of this program 
also includes a Marquardt-Levenberg type parameter optimization algorithm for inverse estimation 
of soil hydraulic and/or solute transport and reaction parameters from measured transient or steady-
state flow and/or transport data for two dimensional problems. 
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 The governing flow and transport equations are solved numerically using Galerkin-type 
linear finite element schemes. Depending upon the size of the problem, the matrix equations 
resulting from discretization of the governing equations are solved using either Gaussian elimination 
for banded matrices, or a conjugate gradient method for symmetric matrices and the ORTHOMIN 
method for asymmetric matrices. 
 The program is distributed by means of several different options (Levels). Levels 2D-Light 
and 2D-Standard are for the programs and the graphical interface for two-dimensional problems 
with either a structured mesh generator for relatively simple flow domain geometries or a CAD 
program for more general domain geometries, and the MESHGEN2D mesh generator for an 
unstructured finite element mesh specifically designed for variably-saturated subsurface flow 
transport problems, respectively. Levels 3D-Light and 3D-Standard include the two dimensional 
version and additionally the three dimensional versions for simple hexagonal or more general 
layered geometries, respectively. 
 This report serves as both a technical manual and reference document. Detailed instructions 
are given for data input preparation. The graphical user interface (GUI) of the Hydrus software 
package is documented in a separate user manual (Šimůnek et al., 2006). 
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Ne number of subelements en, which contain node n [-] 

NG  gravitation number [-] 

NLo  contribution of particle London-van der Walls attractive forces to particle removal [-] 

NPe  Peclet number in the single-collector efficiency coefficient [-] 

NR  interception number [-] 

O actual rate of inflow/outflow to/from a subregion, [L2T-1] or [L3T-1]+ 

p exponent in the water and osmotic stress response function [-] 

pt period of time necessary to complete one temperature cycle (1 day) [T] 

p1 exponent in the water stress response function [-] 

p2 exponent in the osmotic stress response function [-] 

px empirical parameter in the root distribution function [-] 

py empirical parameter in the root distribution function [-] 

pz empirical parameter in the root distribution function [-] 

Pei
e local Peclet number [-] 

qi components of the Darcian fluid flux density [LT-1] 

Qn
A convective solute flux at node n, [MT-1L-1] or [MT-1]+ 

Qn
D dispersive solute flux at node n, [MT-1L-1] or [MT-1]+ 

Qn
T total solute flux at node n, [MT-1L-1] or [MT-1]+ 

{Q} vector in the global matrix equation for water flow, [L2T-1] or [L3T-1]+ 

[Q] coefficient matrix in the global matrix equation for solute transport, [L2] or [L3]+ 

R solute retardation factor [-] 

Ru universal gas constant [ML2T-2K-1M-1] (=8.314kg m2s-2K-1mol-1) 

s adsorbed solute concentration, [-] or [NcM-1] 

se adsorbed solute concentration on type-1 sites [-] 

si initial value of adsorbed solute concentration [-] 

sk adsorbed solute concentration on type-2 sites [-] 

smax  maximum solid phase concentration [NcM-1] 

S sink term [T-1] 

Se degree of saturation [-] 
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Sek degree of saturation at θk [-] 

Sp spatial distribution of the potential transpiration rate [T-1] 

St width of soil surface associated with transpiration, [L] or [L2]+ 

ST cation exchange capacity [MM-1] (mmolckg-1) 

[S] coefficient matrix in the global matrix equation for solute transport, [L2T-1] or [L3T-1]+ 

t time [T] 

t* local time within the time period tp [T] 

tp period of time covering one complete cycle of the temperature sine wave [T] T
 temperature [K] 

Ta actual transpiration rate per unit surface length [LT-1] 

T  average temperature at soil surface during period tp [K] 

TA absolute temperature [K] 

Ti initial temperature [K] 

Tp potential transpiration rate [LT-1] 

Tr
A reference absolute temperature [K] (293.15K=20oC) 

T0 prescribed temperature boundary condition [K] 

v average pore-water velocity [LT-1] 

V volume of water in each subregion, [L2] or [L3]+ 

Vnew volume of water in each subregion at the new time level, [L2] or [L3]+ 

Vold volume of water in each subregion at the previous time level, [L2] or [L3]+ 

Vt volume of water in the flow domain at time t, [L2] or [L3]+ 

Vt
e volume of water in element e at time t, [L2] or [L3]+ 

V0 volume of water in the flow domain at time zero, [L2] or [L3]+ 

V0
e volume of water in element e at time zero, [L2] or [L3]+ 

W total amount of energy in the flow region, [MLT-2] or [ML2T-2]+ 

x* empirical parameter in the root distribution function [L] 

xi spatial coordinates (i=1,2,3) [L] 

Xm maximum rooting length in the x-direction [L] 

y* empirical parameter in the root distribution function [L] 

Ym maximum rooting length in the y-direction [L] 
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z* empirical parameter in the root distribution function [L] 

z0  coordinate of the location where the straining process starts [L] 

Z0 characteristic impedance of a transmission line analog to drain 

Z0’ characteristic impedance of free space (≈376.7 ohms) 

Zm maximum rooting length in the z-direction [L] 

α coefficient in the soil water retention function [L-1] 

α dimensionless water stress response function [-] 

α  sticking efficiency (ratio of the rate of particles that stick to a collector to the rate 
they strike the collector) [-] 

α d value of α for a drying branch of the soil water retention function [L-1] 

α w value of α for a wetting branch of the soil water retention function [L-1] 

α w weighing factor [-] 

α h  scaling factor for the pressure head [-] 

α h
*  temperature scaling factor for the pressure head [-] 

α K scaling factor for the hydraulic conductivity [-] 

α K
* temperature scaling factor for the hydraulic conductivity [-] 

αθ scaling factor for the water content [-] 

β empirical constant in adsorption isotherm [-] 

β  empirical factor in the blocking function [-] 

γg zero-order rate constant for solutes in the gas phase [ML-3T-1] 

γi activity coefficient in soil solution [L3M-1] (l mol-1) 

γs zero-order rate constant for solutes adsorbed onto the solid phase [T-1] 

γw zero-order rate constants for solutes in the liquid phase [ML-3T-1] 

γe boundary segments connected to node n 

ΓD part of flow domain boundary where Dirichlet type conditions are specified 

ΓG part of flow domain boundary where gradient type conditions are specified 

ΓN part of flow domain boundary where Neumann type conditions are specified 

ΓC part of flow domain boundary where Cauchy type conditions are specified 

δij Kronecker delta [-] 

Δt time increment [T] 
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Δtmax maximum permitted time increment [T] 

Δtmin minimum permitted time increment [T] 

ε temporal weighing factor [-] 

εa
c absolute error in the solute mass balance, [ML-1] or [M]+ 

εa
w absolute error in the water mass balance, [L2] or [L3]+ 

εr
c relative error in the solute mass balance [%] 

εr
w relative error in the water mass balance [%] 

ε0 permittivity of free space (used in electric analog representation of drains) 

η empirical constant in adsorption isotherm [L3M-3] 

η  single-collector efficiency [-] 

θ volumetric water content [L3L-3] 

θ* scaled volumetric water content [L3L-3] 

θa parameter in the soil water retention function [L3L-3] 

θk volumetric water content corresponding to Kk [L3L-3] 

θm parameter in the soil water retention function [L3L-3] 

θm
d parameter in soil water retention function; drying branch [L3L-3] 

θm
w parameter in soil water retention function; wetting branch [L3L-3] 

θn volumetric solid phase fraction [L3L-3] 

θo volumetric organic matter fraction [L3L-3] 

θr residual soil water content [L3L-3] 

θr
* scaled residual soil water content [L3L-3] 

θr
d residual soil water content of the main drying branch [L3L-3] 

θr
w residual soil water content of the main wetting branch [L3L-3] 

θs saturated soil water content [L3L-3] 

θs
d saturated soil water content of the main drying branch [L3L-3] 

θs
w saturated soil water content of the main wetting branch [L3L-3] 

θΔ water content at the reversal point of a hysteretic retention function [L3L-3] 

κ parameter which depends on the type of flow being analyzed, [-] or [L]+ 

λ first-order rate constant [T-1] 

λij apparent thermal conductivity tensor of the soil [MLT-3K-1] (e.g. Wm-1K-1) 
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λL longitudinal thermal dispersivity [L] 

λT transverse thermal dispersivity [L] 

λ0 thermal conductivity of porous medium in the absence of flow [MLT-3K-1] (e.g. W m-1K-

1) 

μ  fluid viscosity (= 0.00093 Pa s) [ML-1T-1] 

μg first-order rate constant for solutes in the gas phase [T-1] 

μref dynamic viscosity at reference temperature Tref [MT-1L-1] 

μs first-order rate constant for solutes adsorbed onto the solid phase [T-1] 

μT dynamic viscosity at temperature T [MT-1L-1] 

μw first-order rate constant for solutes in the liquid phase [T-1] 

μg’ first-order rate constant for chain solutes in the gas phase [T-1] 

μs’ first-order rate constant for chain solutes adsorbed onto the solid phase [T-1] 

μw’ first-order rate constant for chain solutes in the liquid phase [T-1] 

ξi activity coefficient on the exchange surfaces [MM-1] (kg mol-1) 

ρ bulk density of porous medium [ML-3] 

ρd dimensionless ratio between the side of the square in the finite element mesh 
surrounding the drain, D, and the effective diameter of a drain, de [-] 

ρf  fluid density (= 998 kg m-3) [ML-3] 

ρref density of soil water at reference temperature Tref [ML-3] 

ρp  bacterial density (= 1080 kg m-3) [ML-3] 

ρT density of soil water at temperature T [ML-3] 

σref surface tension at reference temperature Tref [MT-2] 

σT surface tension at temperature T [MT-2] 

σ1 prescribed flux boundary condition at boundary ΓN [LT-1] 

σ2 prescribed gradient boundary condition at boundary ΓG [-] 

τa tortuosity factor in the gas phase [-] 

τw tortuosity factor in the liquid phase [-] 

φn linear basis functions [-] 

φn
u upstream weighted basis functions [-] 

ψ prescribed pressure head boundary condition at boundary ΓD [L] 
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ψ  dimensionless colloid retention function [-] 

ω first-order adsorption rate constant [T-1] 

ω a angle between principal direction of K1
A and the x-axis of the global coordinate system 

[-] 

ω s performance index used as a criterion to minimize or eliminate numerical   oscillations [-
] 

Ω flow region  

Ωe domain occupied by element e 

ΩR region occupied by the root zone 
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 1. INTRODUCTION 
 
 The importance of the unsaturated zone as an integral part of the hydrological cycle has long 
been recognized. The zone plays an inextricable role in many aspects of hydrology, including 
infiltration, soil moisture storage, evaporation, plant water uptake, groundwater recharge, runoff and 
erosion. Initial studies of the unsaturated (vadose) zone focused primarily on water supply studies, 
inspired in part by attempts to optimally manage the root zone of agricultural soils for maximum 
crop production. Interest in the unsaturated zone has dramatically increased in recent years because 
of growing concern that the quality of the subsurface environment is being adversely affected by 
agricultural, industrial and municipal activities. Federal, state and local action and planning agencies, 
as well as the public at large, are now scrutinizing the intentional or accidental release of surface-
applied and soil-incorporated chemicals into the environment. Fertilizers and pesticides applied to 
agricultural lands inevitably move below the soil root zone and may contaminate underlying 
groundwater reservoirs. Chemicals migrating from municipal and industrial disposal sites similarly 
represent environmental hazards. The same is true for radionuclides emanating from nuclear waste 
disposal facilities. 
 The past several decades has seen considerable progress in the conceptual understanding and 
mathematical description of water flow and solute transport processes in the unsaturated zone. A 
variety of analytical and numerical models are now available to predict water and/or solute transfer 
processes between the soil surface and the groundwater table. The most popular models remain the 
Richards' equation for variably saturated flow, and the Fickian-based convection-dispersion equation 
for solute transport. Deterministic solutions of these classical equations have been used, and likely 
will continue to be used in the near future, for (1) predicting water and solute movement in the 
vadose zone, (2) analyzing specific laboratory or field experiments involving unsaturated water flow 
and/or solute transport, and (3) extrapolating information from a limited number of field experiments 
to different soil, crop and climatic conditions, as well as to different soil and water management 
schemes. 
 Once released into the subsurface environment, industrial and agricultural chemicals are 
generally subjected to a large number of simultaneous physical, chemical, and biological processes, 
including sorption-desorption, volatilization, photolysis, and biodegradation, as well as their 
kinetics. The extent of degradation, sorption and volatilization largely determines the persistence of 
a pollutant in the subsurface [Chiou, 1989]. For example, the fate of organic chemicals in soils is 
known to be strongly affected by the kinetics of biological degradation. Alexander and Scow [1989] 
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gave a review of some of the equations used to represent the kinetics of biodegradation. These 
equations include zero-order, half-order, first-order, three-half-order, mixed-order, logistic, 
logarithmic, Michaelis-Menton, and Monod type (with or without growth) expressions. While most 
of these expressions have a theoretical bases, they are commonly used only in an empirical fashion 
by fitting the equations to observed data. Zero- and first-order kinetic equations remain the most 
popular for describing biodegradation of organic compounds, mostly because of their simplicity and 
the ease at which they can be incorporated in solute transport models. Conditions for the application 
of these two equations are described by Alexander and Scow [1989].   
 One special group of degradation reactions involves decay chains in which solutes are 
subject to sequential (or consecutive) decay reactions. Problems of solute transport involving 
sequential first-order decay reactions frequently occur in soil and groundwater systems. Examples 
are the migration of various radionuclides [Lester et al., 1975; Rogers, 1978; Gureghian, 1981; 
Gureghian and Jansen, 1983], the simultaneous movement of interacting nitrogen species [Cho, 
1971; Misra et al., 1974; Wagenet et al., 1976; Tillotson et al., 1980], organic phosphate transport 
[Castro and Rolston, 1977], and the transport of certain pesticides and their metabolites [Bromilow 
and Leistra, 1980; Wagenet and Hutson, 1987].   
 While in the past most pesticides were regarded as involatile, volatilization is now 
increasingly recognized as being an important process affecting the fate of pesticides in field soils 
[Glotfelty and Schomburg, 1989; Spencer, 1991]. Another process affecting pesticide fate and 
transport is the relative reactivity of solutes in the sorbed and solution phases. Several processes such 
as gaseous and liquid phase molecular diffusion, and convective-dispersive transport, act only on 
solutes that are not adsorbed. Degradation of organic compounds likely occurs mainly, or even 
exclusively, in the liquid phase [Pignatello, 1989]. On the other side, radioactive decay takes place 
equally in the solution and adsorbed phases, while other reactions or transformations may occur only 
or primarily in the sorbed phase. 
 Several analytical solutions have been published for simplified transport systems involving 
consecutive decay reactions [Cho, 1971; Wagenet et al., 1976; Harada et al., 1980; Higashi and 
Pigford, 1980; van Genuchten, 1985]. Unfortunately, analytical solutions for more complex 
situations, such as for transient water flow or the nonequilibrium solute transport with nonlinear 
reactions, are not available and/or cannot be derived, in which case numerical models must be 
employed. To be useful, such numerical models must allow for different reaction rates to take place 
in the solid, liquid, and gaseous phases, as well as for a correct distribution of the solutes among the 
different phases. 
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 The purpose of this technical report is to document version 1.0 of the HYDRUS software 
package simulating two- and three-dimensional variably-saturated water flow, heat movement, and 
transport of solutes involved in sequential first-order decay reactions. The software package consists 
of several computational programs [h2d_calc.exe (2D direct), h2d_clci.exe (2D inverse), 
h2d_wtld.exe (wetland), and h3d_calc.exe (3D direct)] and the interactive graphics-based user 
interface HYDRUS. The HYDRUS program numerically solves the Richards equation for saturated-
unsaturated water flow and convection-dispersion type equations for heat and solute transport. The 
flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport 
equation considers movement by conduction as well as convection with flowing water. The 
governing convection-dispersion solute transport equations are written in a very general form by 
including provisions for nonlinear nonequilibrium reactions between the solid and liquid phases, and 
linear equilibrium reaction between the liquid and gaseous phases. Hence, both adsorbed and 
volatile solutes such as pesticides can be considered. The solute transport equations also incorporate 
the effects of zero-order production, first-order degradation independent of other solutes, and first-
order decay/production reactions that provides the required coupling between the solutes involved in 
the sequential first-order chain. The transport models also account for convection and dispersion in 
the liquid phase, as well as for diffusion in the gas phase, thus permitting one to simulate solute 
transport simultaneously in both the liquid and gaseous phases. HYDRUSD at present considers up 
to fifteen solutes which can be either coupled in a unidirectional chain or may move independently 
of each other. Physical nonequilibrium solute transport can be accounted for by assuming a two-
region, dual porosity type formulation which partition the liquid phase into mobile and immobile 
regions. Attachment/detachment theory, including the filtration theory, is included to simulate 
transport of viruses, colloids, and/or bacteria. 
 The program may be used to analyze water and solute movement in unsaturated, partially 
saturated, or fully saturated porous media. HYDRUS can handle flow domains delineated by 
irregular boundaries. The flow region itself may be composed of nonuniform soils having an 
arbitrary degree of local anisotropy. Flow and transport can occur in the vertical plane, the horizontal 
plane, a three-dimensional region exhibiting radial symmetry about a vertical axis, or in a three-
dimensional region. The water flow part of the model considers prescribed head and flux boundaries, 
boundaries controlled by atmospheric conditions, free drainage boundary conditions, as well as a 
simplified representation of nodal drains using results of electric analog experiments. First- or third-
type boundary conditions can be implemented in both the solute and heat transport parts of the 
model. In addition, HYDRUS implements a Marquardt-Levenberg type parameter estimation 
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scheme for inverse estimation of soil hydraulic and/or solute transport and reaction parameters from 
measured transient or steady-state flow and/or transport data for two-dimensional problem. 
  The governing flow and transport equations are solved numerically using Galerkin-type 
linear finite element schemes. Depending upon the size of the problem, the matrix equations 
resulting from discretization of the governing equations are solved using either Gaussian elimination 
for banded matrices, or the conjugate gradient method for symmetric matrices and the ORTHOMIN 
method for asymmetric matrices [Mendoza et al., 1991]. The program is an extension of the variably 
saturated flow codes HYDRUS-2D of Šimůnek et al. [1999], SWMS_3D of Šimůnek et al. [1995], 
SWMS_2D of Šimůnek et al. [1992] and CHAIN_2D of Šimůnek and van Genuchten [1994], which 
in turn were based in part on the early numerical work of Vogel [1987] and Neuman and colleagues 
[Neuman, 1972, 1973, Neuman et al., 1974; Neuman, 1975; Davis and Neuman, 1983]. 
 Even with an abundance of well-documented models now being available, one major 
problem often preventing their optimal use is the extensive work required for data preparation, 
numerical grid design, and graphical presentation of the output results. Hence, the more widespread 
use of multi-dimensional models requires ways which make it easier to create, manipulate and 
display large data files, and which facilitate interactive data management. Introducing such 
techniques will free users from cumbersome manual data processing, and should enhance the 
efficiency in which programs are being implemented for a particular example. To avoid or simplify 
the preparation and management of relatively complex input data files for two- and three-
dimensional applications, and to graphically display the final simulation results, we developed an 
interactive graphics-based user-friendly interface HYDRUS for the MS Windows 95, 98, NT, ME, 
and XP environments. 
 The HYDRUS software is distributed in the following forms (Levels): 
 1) Level 2D-Light includes the executable code HYDRUS (h2d_calc.exe and h2d_clci.exe) 
and a graphics-based user interface, so as to facilitate data preparation and output display in the MS 
WINDOWS 95, 98, 2000, NT, and/or XP environments. A mesh generator for relatively simple 
rectangular domain geometry is made part of option A. The user interface is written in MS Visual 
C++. Because HYDRUS was written in Microsoft FORTRAN, this code uses several extensions 
that are not part of ANSI-standard FORTRAN, such as dynamically allocated arrays.  
 2) Level 2D-Standard consists of 2D-Light, but further augmented with a CAD program 
MESHGEN2D for designing more general domain geometry, and its discretization into an 
unstructured finite element mesh for a variety of problems involving variably-saturated subsurface 
flow and transport.  Option B is also distributed on a CD ROM and web. 
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 3) Level 3D-Light includes 2D-Standard above and a mesh generator for relatively simple 
hexagonal three-dimensional domain geometry. 
 4) Level 3D-Standard includes 3D-Light, and a mesh generator that can generate 
unstructured meshes for general two-dimensional geometries, that can be extended into a three 
dimensional transport domains. 
 A general overview of the graphics-based interface is described in the accompanying user 
manual. In addition to the detailed description in the accompanying user manual, extensive on-line 
help files are available with each module of the user interface. 
 Demo version of the program, the input and output files of examples discussed in this report, 
plus many additional examples which illustrate the interface and the program in its full complexity, 
can be downloaded from www.hydrus3d.com. 
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 2. VARIABLY SATURATED WATER FLOW 
 
2.1. Governing Flow Equation 
 
 2.1.1. Uniform Flow 
 
 Consider two- and/or three-dimensional isothermal uniform Darcian flow of water in a 
variably saturated rigid porous medium and assume that the air phase plays an insignificant role in 
the liquid flow process. The governing flow equation for these conditions is given by the following 
modified form of the Richards' equation: 

 

 A A
ij iz

i j

h= K  +  - SK Kt x x
θ ⎡ ⎤⎛ ⎞∂ ∂ ∂

⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
 (2.1) 

 
where θ is the volumetric water content [L3L-3], h is the pressure head [L], S is a sink term [T-1], xi 
(i=1,2) are the spatial coordinates [L], t is time [T], Kij

A are components of a dimensionless 
anisotropy tensor KA, and K is the unsaturated hydraulic conductivity function [LT-1] given by 

 
 ( , , , ) ( , , ) ( , , , )s rK h x y z = K x y z  K h x y z  (2.2) 

 
where Kr is the relative hydraulic conductivity and Ks the saturated hydraulic conductivity [LT-1]. 
The anisotropy tensor Kij

A in (2.1) is used to account for an anisotropic medium. The diagonal 
entries of Kij

A equal one and the off-diagonal entries zero for an isotropic medium. If (2.1) is applied 
to planar flow in a vertical cross-section, x1=x is the horizontal coordinate and x2=z is the vertical 
coordinate, the latter taken to be positive upward. Einstein's summation convention is used in (2.1) 
and throughout this report. Hence, when an index appears twice in an algebraic term, this particular 
term must be summed over all possible values of the index. 
 
 2.1.2. Flow in a Dual-Porosity System 
 

Dual-porosity models assume that water flow is restricted to the fractures (or inter-
aggregate pores and macropores), and that water in the matrix (intra-aggregate pores or the rock 
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matrix) does not move at all. These models assume that the matrix, consisting of immobile water 
pockets, can exchange, retain, and store water, but does not permit convective flow. This 
conceptualization leads to two-region, dual-porosity type flow and transport models [Philip, 
1968; van Genuchten and Wierenga, 1976] that partition the liquid phase into mobile (flowing, 
inter-aggregate), θm, and immobile (stagnant, intra-aggregate), θim, regions: 
 
 m im = +θ θ θ  (2.3) 

 
with some exchange of water and/or solutes possible between the two regions, usually calculated 
by means of a first-order rate equation. We will use here the subscript m to represent fractures, 
inter-aggregate pores, or macropores, and the subscript im to represent the soil matrix, intra-
aggregate pores, or the rock matrix. 
 The dual-porosity formulation for water flow as used in HYDRUS-1D is based on a 
mixed formulation, which uses Richards equation (2.1) to describe water flow in the fractures 
(macropores), and a simple mass balance equation to describe moisture dynamics in the matrix 
as follows [Šimůnek et al., 2003]: 
 

 
( ) cosm

m w

im
im w

hK h S
t z x

S
t

θ α Γ

θ Γ

∂ ∂ ∂⎡ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
∂

= − +
∂

 (2.4) 

 
where Sm and Sim are sink terms for both regions, and Γw is the transfer rate for water from the 
inter- to the intra-aggregate pores. 

An alternative dual-porosity approach, not implemented in HYDRUS-1D, was suggested 
by Germann [1985] and Germann and Beven [1985], who used a kinematic wave equation to 
describe gravitational movement of water in macropores. Although dual-porosity models have 
been popularly used for solute transport studies (e.g. van Genuchten [1981]), they have not thus 
far been used to water flow problems. 
 
2.2. Root Water Uptake 
 
 2.2.1. Root Water Uptake without Compensation 
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 The sink term, S, in (2.1) represents the volume of water removed per unit time from a unit 
volume of soil due to plant water uptake. Feddes et al. [1978] defined S as 

 
 ( ) ( ) pS h = h Sα  (2.5) 

where the water stress response function α(h) is a prescribed dimensionless function (Fig. 2.1) of the 
soil water pressure head (0≤α ≤1), and Sp is the potential water uptake rate [T-1]. Figure 2.1 gives a 
schematic plot of the stress response function as used by Feddes et al. [1978]. Notice that water 
uptake is assumed to be zero close to saturation (i.e., wetter than some arbitrary "anaerobiosis point", 
h1). For h<h4 (the wilting point pressure head), water uptake is also assumed to be zero. Water 
uptake is considered optimal between pressure heads h2 and h3, whereas for pressure head between 
h3 and h4 (or h1 and h2), water uptake decreases (or increases) linearly with h. The variable Sp in (2.5) 
is equal to the water uptake rate during periods of no water stress when α (h)=1. van Genuchten 
[1987] expanded the formulation of Feddes by including osmotic stress as follows 

 
 ( , ) ( ) pS h h = h, h  Sφ φα  (2.6) 

 
where hφ is the osmotic head [L], which is assumed here to be given by a linear combination of the 
concentrations, ci, of all solutes present, i.e., 

 
 i ih = a cφ  (2.7) 

 
in which ai are experimental coefficients [L4M] converting concentrations into osmotic heads. van 
Genuchten [1987] proposed an alternative S-shaped function to describe the water uptake stress 
response function (Fig. 2.1), and suggested that the influence of the osmotic head reduction can be 
either additive or multiplicative as follows 
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α  (2.9) 

 
respectively, where p, p1, and p2 are experimental constants. The exponent p was found to be 
approximately 3 when applied to salinity stress data only [van Genuchten, 1987]. The parameter h50 
in (2.8) and (2.9) represents the pressure head at which the water extraction rate is reduced by 50% 
during conditions of negligible osmotic stress. Similarly, hφ50 represents the osmotic head at which 
the water extraction rate is reduced by 50% during conditions of negligible water stress. Note that, in 
contrast to the expression of Feddes et al. [1978], this formulation of the stress response function, 
α(h,hφ), does not consider a transpiration reduction near saturation. Such a simplification seems 
justified when saturation occurs for only relatively short periods of time. 
 When the potential water uptake rate is equally distributed over a two-dimensional 
rectangular root domain, Sp becomes 

 1
pp t

x z

=   S S T
 L L

 (2.10) 

 
 Figure 2.1. Schematic of the plant water stress response function, α(h), 
 as used by a) Feddes et al. [1978] and b) van Genuchten [1987]. 
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 Figure 2.2. Schematic of the potential water uptake distribution function, b(x,y,z), 
 in the soil root zone. 
 
where Tp is the potential transpiration rate [LT-1], Lz is the depth [L] of the root zone, Lx is the width 
[L] of the root zone, and St is the width [L] of the soil surface associated with the transpiration 
process. Notice that Sp reduces to Tp/Lz when St=Lx. For three-dimensional problems, (2.10) 
additionally includes the width of the y-direction, Lx [L], and St becomes the soil surface associated 
with transpiration [L2] (Figure 2.2, right). 
 Equation (2.10) may be generalized by introducing a non-uniform distribution of the 
potential water uptake rate over a root zone of arbitrary shape [Vogel, 1987]: 

 
 ( , , )p t pS = b x y z S T  (2.11) 

 
where b(x,y,z) is the normalized water uptake distribution [L-2 or L-3]. This function describes the 
spatial variation of the potential extraction term, Sp, over the root zone (Fig. 2.2), and is obtained 
from b’(x,y,z) as follows    

 

 ( , , )( , , )
( , , )

R

b x y zb x y z =
b x y z d

Ω

′

′ Ω∫
 (2.12) 

 
where ΩR is the region occupied by the root zone, and b’(x,y,z) is an arbitrarily prescribed 
distribution function. Normalizing the uptake distribution ensures that b(x,y,z) integrates to unity 
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over the flow domain, i.e., 

 
 ( , , ) 1

R

b x y  z d =
Ω

Ω∫  (2.13) 

From (2.11) and (2.13) it follows that Sp is related to Tp by the expression 

 

 1

R

p p
t

S d T
S Ω

Ω=∫  (2.14) 

 
The actual water uptake distribution is obtained by substituting (2.11) into (2.5): 

 
 ( , , , , ) ( , , , ) ( , , ) t pS h h x y z = h,h x y z b x y z S Tφ φα  (2.15) 

 
whereas the actual transpiration rate, Ta, is obtained by integrating (2.15) as follows 

 

 1 ( , , , , ) ( , , )
R R

a p
t

T = Sd = T h h x y z b x y z d
S φα

Ω Ω

Ω Ω∫ ∫  (2.16) 

 

 2.2.2. Root Water Uptake with Compensation 
 

The ratio of actual to potential transpiration of the root uptake without compensation is 
defined as follows: 
 

 1 ( , , , ) ( , , , ) ( , , )
R R

a

p p

T
= S h,h x y z d = h,h x y z b x y z d

T T φ φα ω
Ω Ω

Ω Ω =∫ ∫  (2.17) 

 
where ω is a dimensionless water stress index [Jarvis, 1989]. Following Jarvis [1989], we 
introduce a critical value of the water stress index ωc, a so-called the root adaptability factor, 
which represents a threshold value above which root water uptake reduced in stressed parts of 
the root zone is fully compensated by increased uptake from other parts. However, some 
reduction in potential transpiration will occur below this threshold value, although smaller than 
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for water uptake without compensation. 
 
 

 
Figure 2.3. Ratio of actual to potential transpiration as a function of the stress index ω. 

 
Thus, for the interval when ω is larger than the threshold value ωc (Fig. 2.3), one obtains 
 

 

( , , , ) ( , , , ) ( , , )

( , , , ) ( , , )
1R

p

La

p

T
S h,h x y z = h,h x y z b x y z

h,h x y z b x y z dx
T

=
T

φ φ

φ

α
ω

α
ω

ω ω
= =

∫  (2.18) 

 
While for the interval when ω is smaller than the threshold value ωc, one has 

 

( , , ) ( , , , ) ( , , )

( , , , ) ( , , )
1R

p

c

La

p c c

TS h,h ,x y z = h,h x y z b x y z

h,h x y z b x y z dx
T =
T

φ φ

φ

α
ω

α
ω

ω ω
= <

∫  (2.19) 

 

When the parameter ωc is equal to one we hence have noncompensated root water uptake, and 
when ωc is equal to zero we obtain fully compensated uptake. 
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 2.2.3. Spatial Root Distribution Functions 
 
Following two- and three-dimensional root distribution functions are implemented into 

HYDRUS [Vrught et al., 2001, 2002]: 

 

 ( )
* *

, 1 1
z r

m m

p pz z x x
Z X

m m

z xb x z e
Z X

⎛ ⎞
− − + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.20) 

 ( )
* * *

, , 1 1 1
yx z

m m m

pp px x y y z z
X Y Z

m m m

x y zb x y z e
X Y Z

⎛ ⎞
− − + − + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞

= − − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (2.21) 

 
where Xm, Ym, and Zm are the maximum rooting lengths in the x-, y-, and z- directions [L], 
respectively; x, y, and z are distances from the origin of the tree in the x-, y-, and z- directions 
[L], respectively; px [-], py [-], pz [-], x* [L], y* [L], and z* [L] are empirical parameters, and 
b(x,z) and b(x,y,z) denote two- and three-dimensional spatial distribution of the potential root 
water uptake [-]. Following Vrught et al. [2002], we set px, py and pz to unity for z>z*, x>x* and 
y>y*, respectively. Vrugt et al. [2001ab] showed that the root water uptake in (2.20) is extremely 
flexible and allows spatial variations of water uptake as influenced by non-uniform water 
application (e.g. drip irrigation) and root length density patterns. See Vrugt et al. [2001ab] for 
different configurations of normalized spatial distribution of potential root water uptake. 
 
2.3. The Unsaturated Soil Hydraulic Properties 
 
 The unsaturated soil hydraulic properties, θ(h) and K(h), in (2.1) are in general highly 
nonlinear functions of the pressure head. HYDRUS permits the use of five different analytical 
models for the hydraulic properties [Brooks and Corey, 1964; van Genuchten, 1980; and Vogel and 
Císlerová, 1988; Kosugi, 1995, Durner, 1994]. 
 The soil water retention, θ(h), and hydraulic conductivity, K(h), functions according to 
Brooks and Corey [1964] are given by 

 

 1
1 1

-n

e
       h  <  - / | h |S =

              h    - /
αα
α

⎧
⎨

≥⎩
 (2.22) 
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 2 2/ n+l+
s eK = K S  (2.23) 

 
respectively, where Se is the effective water content, 

 

 -
-

r
e

s r

S θ θ
θ θ

=  (2.24) 

 
in which θr and θs denote the residual and saturated water content, respectively; Ks is the saturated 
hydraulic conductivity, α is the inverse of the air-entry value (or bubbling pressure), n is a pore-size 
distribution index, and l is a pore-connectivity parameter assumed to be 2.0 in the original study of 
Brooks and Corey [1964]. The parameters α, n and l in HYDRUS are considered to be merely 
empirical coefficients affecting the shape of the hydraulic functions. 
 HYDRUS also implements the soil-hydraulic functions of van Genuchten [1980] who used 
the statistical pore-size distribution model of Mualem [1976] to obtain a predictive equation for the 
unsaturated hydraulic conductivity function in terms of soil water retention parameters. The 
expressions of van Genuchten [1980] are given by 

 

 
-

0
( ) [1 | | ]

0

s r
r n m

s

      h
h  h

                      h

θ θ
θ

θ α
θ

⎧ + <⎪= +⎨
⎪ ≥⎩

 (2.25) 

 
 

2
1/( ) [1- ](1- )ml m

s e e
K h K S S=  (2.26) 

where  

 1 1 1m = - /n  ,    n  >   (2.27) 

 
The above equations contain six independent parameters: θr, θs, α, n, Ks, and l. The pore-
connectivity parameter l in the hydraulic conductivity function was estimated [Mualem, 1976] to be 
about 0.5 as an average for many soils.  
 A third set of hydraulic equations implemented in HYDRUS are those by Vogel and 
Císlerová [1988] who modified the equations of van Genuchten [1980] to add flexibility in the 
description of the hydraulic properties near saturation. The soil water retention, θ(h), and hydraulic 
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conductivity, K(h), functions of Vogel and Císlerová [1988] are given by (Fig. 2.4) 

 

 
-

( ) (1 | )|
m a

a smn

s s

     h h  
h  h  

                       h h

θ θ
θ

θ α
θ

⎧ + <⎪= +⎨
⎪ ≥⎩

 (2.28) 

and 

 ( )
( )
( )

( )

s r s

k s k
k k s

s k

s s

K K h h h
h h K K

K h K h h h
h h

K h h

≤⎧
⎪ − −⎪= + < <⎨ −⎪
⎪ ≥⎩

 (2.29) 

respectively, where 

 
( ) ( )
( ) ( )

21/ 2
rk e

r
s ek r k

F FK S
K

K S F F
θ θ
θ θ

⎡ ⎤−⎛ ⎞
= ⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎣ ⎦

 (2.30) 

 

 ( )
1/

1

mm

a

m a

F θ θθ
θ θ

⎡ ⎤⎛ ⎞−
⎢ ⎥= − ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 (2.31) 

 

 k r
ek

s r

S
θ θ
θ θ

−
=

−
 (2.32) 

 
The above equations allow for a non-zero minimum capillary height, hs, by replacing the parameter 
θs in van Genuchten's retention function by a fictitious (extrapolated) parameter θm slightly larger 
than θs as shown in Figure 2.4. While this change from θs to θm has little or no effect on the retention 
curve, the effect on the shape and value of the hydraulic conductivity function can be considerable, 
especially for fine-textured soils when n is relatively small (e.g., 1.0 < n < 1.3). To increase the 
flexibility of the analytical expressions, the parameter θr in the retention function was replaced by 
the fictitious (extrapolated) parameter θa≤θr. The approach maintains the physical meaning of θr and 
θs as measurable quantities. Equation (2.30) assumes that the predicted hydraulic conductivity 
function is matched to a measured value of the hydraulic conductivity, Kk=K(θk), at some water 
content, θk, less that or equal to the saturated water content, i.e., θk≤θs and Kk≤Ks [Vogel and 
Císlerová, 1988; Luckner et al., 1989]. Inspection of (2.28) through (2.30) shows that the hydraulic 
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characteristics contain 9 unknown parameters: θr, θs, θa, θm, α, n, Ks , Kk , and θk . When θa=θr, 
θm=θk=θs and Kk=Ks, the soil hydraulic functions of Vogel and Císlerová [1988] reduce to the 
original expressions of van Genuchten [1980]. 
 
 

 
 
 Figure 2.4. Schematics of the soil water retention (a) and hydraulic conductivity (b) functions 
 as given by equations (2.28) and (2.29), respectively. 
 
 
 Version 3.0 of Hydrus allows the soil hydraulic properties to be defined also acoording to 
Kosugi [1996], who suggested the following lognormal distribution model for Se(h): 
 

 
( )ln /1 ( 0)

2 2
1 ( 0)

r
e

s r

h
erfc h

S n
h

α
θ θ
θ θ

⎧ ⎧ ⎫⎪ ⎪ <− ⎪ ⎨ ⎬= = ⎨ ⎪ ⎪⎩ ⎭− ⎪ ≥⎩

 (2.33) 

 
Application of Mualem's pore-size distribution model [Mualem, 1976] now leads to the 
following hydraulic conductivity function: 
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( )

2

1/ 2 ln /1 ( 0)
2 2 2

( 0)

s e

s

h nK S erfc h
K n

K h

α⎧ ⎧ ⎫⎡ ⎤⎪ ⎪⎪ + <⎪ ⎨ ⎬⎢ ⎥= ⎨ ⎪ ⎪⎣ ⎦⎩ ⎭⎪
≥⎪⎩

 (2.34) 

 
Note that in in this text we use symbols α instead of h0 and n instead of σ as used in Kosugi 
[1996]. 

Durner [1994] divided the porous medium into two (or more) overlapping regions and 
suggested to use for each of these regions a van Genuchten-Mualem type function [van 
Genuchten, 1980] of the soil hydraulic properties. Linear superposition of the functions for each 
particular region gives then the functions for the composite multimodal pore system [Durner et 
al., 1999]: 
 

 1 1 2 2
1 1 2 2= [1 ( ) ] [1 ( ) ]n -m n -m

e w + h w + hS α α+  (2.35) 

 
Combining this retention model with Mualem’s [1976] pore-size distribution model leads now to: 
 

 K S = K
w S w S w - - S w - - S

w w
e s

e e

l m
e
/ m m

e
/ m

( )
[ ( ) ] [ ( ) ]1 2 1 1

1
2 2

1
2

1 1 2 2
2

1 2

1

1
1 2

2
21 1 1 1+ +

+

d i e j
b g

α α

α α
 (2.36) 

 
where wi are the weighting factors for the two overlapping regions, and αi, ni, mi (=1-1/ni), and l 
are empirical parameters of the separate hydraulic functions (i=1,2).  

An example of composite retention and hydraulic conductivity functions for two 
overlapping porous media is shown in Figure 2.5. Note that the pressure head axes are on a log 
scale, which causes the near-saturated values to be significantly enlarged. The fracture domain in 
this example represents only 2.5% of the entire pore space, but accounts for almost 90% of the 
hydraulic conductivity close to saturation. Curves similar to those in Figure 2.5 have been used 
also for fractured rock by Peters and Klavetter [1988], Pruess and Wang [1987], and Flint et al. 
[2001], among others. 
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Figure 2.5. Example of composite retention (left) and hydraulic conductivity (right) functions (θr=0.00, 
θs=0.50, α1=0.01 cm-1, n1=1.50, l=0.5, Ks=1 cm d-1, w1=0.975, w2=0.025, α2=1.00 cm-1, n2=5.00). 

 
 
2.4. Scaling in the Soil Hydraulic Functions 
 
 HYDRUS implements a scaling procedure designed to simplify the description of the spatial 
variability of the unsaturated soil hydraulic properties in the flow domain. The code assumes that the 
hydraulic variability in a given area can be approximated by means of a set of linear scaling 
transformations which relate the individual soil hydraulic characteristics θ(h) and K(h) to reference 
characteristics θ*(h*) and K*(h*). The technique is based on the similar media concept introduced by 
Miller and Miller [1956] for porous media which differ only in the scale of their internal geometry. 
The concept was extended by Simmons et al. [1979] to materials which differ in morphological 
properties, but which exhibit 'scale-similar' soil hydraulic functions. Three independent scaling 
factors are embodied in HYDRUS. These three scaling parameters may be used to define a linear 
model of the actual spatial variability in the soil hydraulic properties as follows [Vogel et al., 1991]: 

 

 

* *

* * *

*

( ) ( )

( ) [ ( ) - ]
K

rr

h

K h  K h  

h  h   

h  h
θ

α

θ θ α θ θ
α

=

= +

=

 (2.37) 

 
in which, for the most general case, αθ, αh and αK are mutually independent scaling factors for the 
water content, the pressure head and the hydraulic conductivity, respectively. Less general scaling 
methods arise by invoking certain relationships between αθ, αh and/or αK. For example, the original 
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Miller-Miller scaling procedure is obtained by assuming αθ=1 (with θr* = θr), and αK=αh
-2. A 

detailed discussion of the scaling relationships given by (2.37), and their application to the hydraulic 
description of heterogeneous soil profiles, is given by Vogel et al. [1991]. 
 
2.5. Temperature Dependence of the Soil Hydraulic Functions 
 
 A similar scaling technique as described above is used in HYDRUS to express the 
temperature dependence of the soil hydraulic functions. Based on capillary theory that assumes that 
the influence of temperature on the soil water pressure head can be quantitatively predicted from the 
influence of temperature on surface tension, Philip and de Vries [1957] derived the following 
equation 
 

 dh h d=  
dT dT

σ
σ

 (2.38) 

 
where T is temperature [K] and σ is the surface tension at the air-water interface [MT-2]. From (2.38) 
it follows that 

 *T
T ref h ref

ref

h = h =  hσ α
σ

 (2.39) 

 
where hT and href (σT and σref) are pressure heads (surface tensions) at temperature T and reference 
temperature Tref , respectively; and αh

* is the temperature scaling factor for the pressure head. 
 Following Constantz [1982], the temperature dependence of the hydraulic conductivity can 
be expressed as 

 

 *( ) ( ) ( )ref T
T ref K ref

T ref

 K   K  K
μ ρθ θ α θ
μ ρ

= =  (2.40) 

 
where Kref and KT denote hydraulic conductivities at the reference temperature Tref and soil 
temperature T, respectively; μref and μT (ρref and ρT) represent the dynamic viscosity [ML-1T-1] 
(density of soil water [ML-3]) at temperatures Tref and T, respectively; and αK

* is the temperature 
scaling factor for the hydraulic conductivity. 
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2.6. Hysteresis in the Soil Hydraulic Properties 
 
 Applications of unsaturated flow models often assume unique, single-valued (non-hysteretic) 
functions for θ(h) and K(h) to characterize the hydraulic properties at a certain point in the soil 
profile. While such a simplification may be acceptable for some flow simulations, many cases 
require a more realistic description involving hysteresis in the soil hydraulic properties. The 
HYDRUS code incorporates hysteresis by using the empirical model introduced by Scott et al. 
[1983]. This model was also employed by Kool and Parker [1987], who modified the formulation to 
account for air entrapment. The present version of HYDRUS further extends the model of Kool and 
Parker according to Vogel et al. [1996] by considering also hysteresis in the hydraulic conductivity 
function. 
 The adopted procedure for modeling hysteresis in the retention function requires that both 
the main drying and main wetting curves be known (Fig. 2.6). These two curves are described with 
(2.26) using the parameter vectors (θr

d, θs
d, θm

d, αd, nd) and (θr
w, θs

w, θm
w, αw, nw), respectively, 

where the subscripts d and w indicate wetting and drying, respectively. The following restrictions are 
expected to hold in most practical applications: 

 
 ,d w d w

r r=    θ θ α α≤  (2.41) 

 
We also invoke the often-assumed restriction 

 
 d wn n=  (2.42)  
 

If data are lacking, one may use αw = 2αd as a reasonable first approximation [Kool and Parker, 
1987; Nielsen and Luckner, 1992]. We further assume 

 

 - ( - )
-

w
w ds r
m r m rd

s r

 θ θθ θ θ θ
θ θ

= +  (2.43)  
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Figure 2.6. Example of a water retention curve showing hysteresis. Shown are the 

 boundary wetting curve, θ w(h), and the boundary drying curve, θ d(h). 
 
 
so that the parameters θs and α are the only independent parameters describing hysteresis in the 
retention function. According to the hysteresis model, drying scanning curves are scaled from the 
main drying curve, and wetting scanning curves from the main wetting curve. The scaling factors for 
the drying scanning curves can be obtained by considering the main drying curve as a reference 
curve in scaling equation (2.37) (keeping α h = 1 to scale only in the water content direction), i.e.: 

 
 '( ) [ ( ) - ]d d

r rh  hθθ θ α θ θ= +  (2.44) 

 
and forcing each scanning curve, θ(h), to pass through the point (θΔ, hΔ) characterizing the latest 
reversal from wetting to drying. Substituting this reversal point into (2.44), and assuming that 
θr = θr

d, leads to 
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 -
( ) -

r
d

rhθ
θ θα

θ θ
Δ

Δ

=  (2.45) 

 
Note that the scaling procedure results in a fictitious value of the parameter θs’ for the drying 
scanning curve (this parameter may be located outside of the main hysteresis loop). The scaling 
relationship is similarly for the wetting scanning curves 

 
 '( ) [ ( ) - ]w

r rh  hθθ θ α θ θ= +  (2.46) 

 
in which the fictitious parameter θr’ is now used (again possibly scaled outside of the main loop).  
The scaling factor αθ for a particular scanning curve can be obtained by substituting the reversal 
point (θΔ, hΔ) and the full saturation point (θs, 0) into (2.46), and subtracting the two resulting 
equations to eliminate θr’ to give 
 

 -
( ) -

s
w w

shθ
θ θα

θ θ
Δ

Δ

=  (2.47) 

 
The parameter θr’ is subsequently determined from (2.46) as θr’ = θs - αθ(θs

w - θr). If the main 
hysteresis loop is not closed at saturation, the water content at saturation for a particular wetting 
scanning curve is evaluated using the empirical relationship of Aziz and Settari [1979] 

 

 - 1 1- , -
1 ( - ) - -

d
d s

s s d d w d d
s s s s r

      R  
R 
θ θθ θ

θ θ θ θ θ θ
Δ

Δ

= =
+

 (2.48) 

 
 An analogous hysteretic procedure can be applied to the unsaturated hydraulic conductivity 
function K(h). The main branches Kd(h) and Kw(h) of the hysteresis loop are characterized by the 
same set of parameters as the corresponding retention curves θd(h) and θw(h), and by the saturated 
conductivities Ks

d and Ks
w according to Eq. (2.26). For drying scanning curves we obtain from (2.37)  

 
 ( ) ( )d

KK h K hα=  (2.49) 
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From knowledge of the reversal point (hΔ, KΔ) we obtain 

 

 
( )K d

K
K h

α Δ

Δ

=  (2.50) 

 
For a wetting scanning curve we have now 

 
 '( ) ( )w

r KK h K K hα= +  (2.51) 

 
where Kr’ is a fictitious parameter. Substituting the reversal point (hΔ, KΔ) and the saturation point 
(0, Ks) into (2.40) and solving for αK yields 
 

 
( )

s
K w w

s

K   -  K  =  
K h   - K

α Δ

Δ

 (2.52) 

 
The fictitious conductivity parameter Kr’ may be obtained from (2.51) as Kr’ = Ks - αK Ks

w. If the 
main hysteresis loop is not closed at saturation, the hydraulic conductivity at saturation for a wetting 
scanning curve is evaluated using equations similar to (2.48), i.e., 
 

 - 1 1- , -
1 ( - ) -

d
d s

s s d d w d
s s s s

K KK K     R
R K K K K K

Δ

Δ

= =
+

 (2.53) 

 
 While relatively simple to implement, the above model has been found to suffer from a 
so-called pumping effect, in which the hysteresis loops can move to physically unrealistic parts 
of the retention function. As an alternative, we also incorporated in HYDRUS the hysteresis 
model of Lenhard et al. [1991] and Lenhard and Parker [1992] that eliminates pumping by 
keeping track of historical reversal points. We greatly acknowledge the help of Robert Lenhard 
in this effort. 
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2.7. Initial and Boundary Conditions 
 
 The solution of Eq. (2.1) requires knowledge of the initial distribution of the pressure head 
within the flow domain, Ω: 
 

 0( , , , ) ( , , )     for      =  0h x y z  t = x y z th  (2.54) 

 
where h0 is a prescribed function of x and z. 
 
 2.7.1. System-Independent Boundary Conditions 
 
 HYDRUS implements three types of conditions to describe system-independent interactions 
along the boundaries of the flow region. These conditions are specified pressure head (Dirichlet 
type) boundary conditions of the form 
 

 ( , , , ) ( , , , ) for   ( , , )  ε  Dh x y z  t = x y z  t      x y zψ Γ  (2.55) 

 
specified flux (Neumann type) boundary conditions given by 
 

 1[ ( )] ( , , , )     for   ( , , )  ε  A A
Nij iz i

j

h- K K + K n = x y z t x y z
x

σ∂
Γ

∂
 (2.56) 

 
and specified gradient boundary conditions 
 

 2( )] ( , , , )     for   ( , , )  ε  A A
gij iz i

j

hK + K n = x y z t x y z
x

σ∂
Γ

∂
 (2.57) 

 
where ΓD, ΓN, and ΓG indicate Dirichlet, Neumann, and gradient type boundary segments, 
respectively; ψ [L], σ1 [LT-1], and σ 2 [-] are prescribed functions of x, z and t; and ni are the 
components of the outward unit vector normal to boundary ΓN or ΓG. As pointed out by McCord 
[1991], the use of the term "Neumann type boundary condition" for the flux boundary is not very 
appropriate since this term should hold for a gradient type condition (see also Section 3.2 for solute 
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transport). However, since the use of the Neumann condition is standard in the hydrologic literature 
[Neuman, 1972; Neuman et al., 1974], we shall also use this term to indicate flux boundaries 
throughout this report.  HYDRUS implements the gradient boundary condition only in terms of a 
unit vertical hydraulic gradient simulating free drainage from a relatively deep soil profile. This 
situation is often observed in field studies of water flow and drainage in the vadose zone [Sisson, 
1987; McCord, 1991]. McCord [1991] states that the most pertinent application of (2.57) is its use as 
a bottom outflow boundary condition for situations where the water table is situated far below the 
domain of interest. 
 
 2.7.2. System-Dependent Boundary Conditions 
 
 In addition to the system-independent boundary conditions given by (2.55), (2.56), and (2. 
57), HYDRUS considers three different types of system-dependent boundary conditions which 
cannot be defined a priori. One of these involves soil-air interfaces, which are exposed to 
atmospheric conditions. The potential fluid flux across these interfaces is controlled exclusively by 
external conditions. However, the actual flux depends also on the prevailing (transient) soil moisture 
conditions. Soil surface boundary conditions may change from prescribed flux to prescribed head 
type conditions (and vice-versa). In the absence of surface ponding, the numerical solution of (2.1) is 
obtained by limiting the absolute value of the flux such that the following two conditions are 
satisfied [Neuman et al., 1974]: 

 

 ( )A A
ij iz i

j

h| K K + K n |  E
x

∂
≤

∂
 (2.58) 

and 

 A Sh  h h≤ ≤  (2.59) 

 
where E is the maximum potential rate of infiltration or evaporation under the current atmospheric 
conditions, h is the pressure head at the soil surface, and hA and hS are, respectively, minimum and 
maximum pressure heads allowed under the prevailing soil conditions. The value for hA is 
determined from the equilibrium conditions between soil water and atmospheric water vapor, 
whereas hS is usually set equal to zero. HYDRUS assumes that any excess water on the soil surface 
is immediately removed. When one of the end points of (2.59) is reached, a prescribed head 
boundary condition will be used to calculate the actual surface flux. Methods of calculating E and hA 
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on the basis of atmospheric data have been discussed by Feddes et al. [1974]. 
 A second type of system-dependent boundary condition considered in HYDRUS is a 
seepage face through which water leaves the saturated part of the flow domain. In this case, the 
length of the seepage face is not known a priori. HYDRUS assumes that the pressure head is always 
uniformly equal to zero along a seepage face. Additionally, the code assumes that water leaving the 
saturated zone across a seepage face is immediately removed by overland flow or some other 
removal process. 
 Finally, a third class of system-dependent boundary conditions in HYDRUS concerns tile 
drains. Similarly as for seepage phase, HYDRUS assumes that as long as a drain is located in the 
saturated zone, the pressure head along the drain will be equal to zero; the drain then acts as a 
pressure head sink. However, the drain will behave as a nodal sink/source with zero recharge when 
located in the unsaturated zone. More information can be found in Section 5.3.7. 
 In addition to system-dependent boundary conditions available in version 2.x of 
HYDRUS-2D, several new options are available in HYDRUS:  

a) While in version 2.0, all boundary conditions (i.e., fluxes or pressure heads) changed in 
abrupt steps, the new version allows boundary pressure heads to change smoothly with 
time. Abrupt changes in the pressure heads lead to sudden changes in fluxes, while 
smoothly changing pressure heads provide smoothly changing fluxes. An example of 
such a boundary condition is the water level in a stream or furrow. 

b) While version 2.0 only allowed either time-variable pressure heads or time-variable 
fluxes on a particular part of the boundary, the new version allows boundary conditions 
to change from variable pressure heads to a zero flux and vice-versa. This boundary 
condition can be used for example for a disc permeameter where the specified head 
changes to a zero flux during time periods when the permeameter is re-supplied with 
water. The zero flux is initiated by specifying a value larger than 999999. 

c) When a time-variable pressure head boundary condition is specified along a boundary, 
then the specified value is assigned to the lowest nodal point of a particular boundary, 
while pressure heads at other nodes are adjusted based on the z-coordinate. When this 
option is selected, then nodes with calculated negative pressure heads are not associated 
with a Dirichlet boundary condition, but rather with a zero flux. A fluctuating water level 
in a stream or furrow is an example of this type of boundary condition. While positive 
pressure head values are below the water table, negative values occur above the water 
table. 
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d) This is similar to c) except that an atmospheric boundary condition is assigned to nodes 
with negative calculated pressure heads. 

e) This is similar to c) except that a seepage face boundary condition is assigned to nodes 
with negative calculated pressure heads. 

f) When this type of system-dependent boundary condition is selected, then HYDRUS 
treats the time-variable flux boundary conditions similarly as atmospheric fluxes. This 
means that pressure heads have two limiting values, with the maximum pressure head 
equal to hCritS and the minimum pressure head equal to hCritA. 

g) While in version 2.x of the code, the flux across the nonactive part of the seepage face 
was always equal to zero, the new version can apply atmospheric boundary conditions on 
a nonactive seepage face. 

h) When heat transport is simulated simultaneously with water flow and atmospheric 
boundary conditions, then snow accumulation on top of the soil surface can be simulated. 
The code then assumes that when the air temperature is below -2 C all precipitation is in 
the form of snow. When the air temperature is above +2 C all precipitation is in the form 
of liquid, while a linear transition is used between the two limiting temperatures (-2,2). 
The code further assumes that when the air temperature is above zero, the existing snow 
layer (if it exists) melts proportionally to the air temperature. 

Boundary condition options a) through g) can be used only with the first time-variable head 
condition. 

 
2.8. Water Mass Transfer  
 

The mass transfer rate, Γw, in (2.4) for water between the fracture and matrix regions in 
several dual-porosity studies (e.g. Phillip [1968]; Šimůnek et al. [2003]) has been assumed to be 
proportional to the difference in effective saturations of the two regions using the first-order rate 
equation: 
 

 m imim
w e eS S

t
θ

Γ ω
∂

⎡ ⎤= = −⎣ ⎦∂
 (2.60)  

 
where θim is the matrix water content, ω is a first-order rate coefficient (T-1), and Se

m and Se
im are 

effective fluid saturations of the mobile (fracture) and immobile (matrix) regions, respectively. 
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Equation (2.60) assumes that the mass transfer rate is proportional to the difference in effective 
water contents, rather than pressure heads [Gerke and van Genuchten, 1993b], which should 
provide a more realistic description of the exchange rate between the fracture and matrix regions. 
An inherent assumption of (2.60) is that the water retention properties of the matrix and the 
fracture domains are identical. For this reason, equation (2.60) must be used with some caution 
and probably only for dual-porosity models. The approach has nevertheless been used 
successfully in multiple studies (e.g., Köhne et al. [2004, 2005]). 

An important advantage of (2.60) is the fact that the dual-porosity model based on this 
mass transfer equation requires significantly fewer parameters since one does not need to know 
the retention function for the matrix region explicitly, but only its residual and saturated water 
contents. Coupling (2.60) with a dual-porosity nonequilibrium flow model leads to the usual soil 
hydraulic parameters needed for the equilibrium model, two additional parameters characterizing 
the matrix region (i.e. its residual, θr

im, and saturated, θs
im, water contents), and the first-order 

mass transfer coefficient ω. By additionally assuming that the residual water content of the 
fracture region is equal to zero (and hence that residual water is present only in the immobile 
region), one could further decrease the number of model parameters. 

When the rate of exchange of water between the fracture and matrix regions is assumed 
to be proportional to the difference in pressure heads between the two pore regions [Gerke and 
van Genuchten, 1993a], the coupling term, Γw, becomes: 
 
 ( - )w w f m=  h hΓ α  (2.61) 

 
in which αw is a first-order mass transfer coefficient [L-1T-1]. Since pressure heads are now 
needed for both regions, this approach requires retention curves for both pore regions. For 
porous media with well-defined geometries, the first-order mass transfer coefficient, αw, can be 
defined as follows [Gerke and van Genuchten, 1993b]: 
 

 
2w a wK

d
βα γ=  (2.62) 

 
where d is an effective ‘diffusion’ pathlength (i.e. half the aggregate width or half the fracture 
spacing) [L], β is a shape factor that depends on the geometry [-], and γw is a scaling factor 
(=0.4) obtained by matching the results of the first-order approach at the half-time level of the 
cumulative infiltration curve to the numerical solution of the horizontal infiltration equation 
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(Gerke and van Genuchten, 1993b). Gerke and van Genuchten [1996] evaluated the effective 
hydraulic conductivity Ka [LT-1] of the fracture-matrix interface using a simple arithmetic 
average involving both hf and hm as follows 
 
 ( ) 0.5 ( ) ( )a a f a mK h K h K h⎡ ⎤= +⎣ ⎦  (2.63) 

 
The use of (2.62) implies that the medium contains geometrically well-defined rectangular or 
other types of macropores or fractures (e.g. Edwards et al. [1979], van Genuchten and Dalton 
[1986], and Gerke and van Genuchten [1996]). While geometrically based models are 
conceptually attractive, they may be too difficult to use for field applications, partly because 
structured soils and rocks usually contain mixtures of aggregates and matrix blocks of various 
sizes and shapes, but also because the parameters in (2.62) may not be identifiable. Hence, rather 
than using (2.62) directly, one could also lump β, d, and γw into one effective hydraulic 
conductivity Ka

* of the fracture-matrix interface to give  
 
 *( )w aK hα =  (2.64) 

 
in which case Ka

* can be used as a calibration parameter (this variable is an input parameter to 
HYDRUS). 
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3. NONEQUILIBRIUM TRANSPORT OF SOLUTES INVOLVED IN SEQUENTIAL FIRST-
ORDER DECAY REACTIONS 

 
3.1. Governing Transport Equation 
 
 We assume that solutes can exist in all three phases (liquid, solid, and gaseous) and that the 
decay and production processes can be different in each phase. Interactions between the solid and 
liquid phases may be described by nonlinear nonequilibrium equations, while interactions between 
the liquid and gaseous phases are assumed to be linear and instantaneous. We further assume that the 
solutes are transported by convection and dispersion in the liquid phase, as well as by diffusion in 
the gas phase. A general structure of the system of first-order decay reactions for three solutes (A, B 
and C) is as follows [Šimůnek and van Genuchten, 1995]: 

 

 Products            Products
 μg,1 μw,1  μs,1 μg,2 μw,2 μs,2

 

 A μw,1 B μw,2             C ...
 g1 c1 s1         μs,1 g2 c2 s2 μs,2
 kg,1 ks,1 kg,2 ks,2 μg,1 μg,2 

 γg,1    γw,1    γs,1 γg,2     γw,2     γs,2 

 Products                       Products
 

where c, s, and g represent concentrations in the liquid, solid, and gaseous phases, respectively; the 
subscripts s, w, and g refer to solid, liquid and gaseous phases, respectively; straight arrows represent 
the different zero-order (γ) and first-order (μ, μ’) rate reactions, and circular arrows (kg, ks) indicate 
equilibrium distribution coefficients between phases.   
 Typical examples of sequential first-order decay chains are:  
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1. Radionuclides [van Genuchten, 1985] 
 
 
 238Pu → 234U → 230Th → 226Ra 
 c1  s1  c2  s2  c3  s3  c4  s4 
        
 

2. Nitrogen [Tillotson et al., 1980] 
 
   g2      N2 

   ↑      
 (NH2)2CO → NH4

+ → NO2
- → NO3

- 

 c1  s1  c2  s2  c3  c4 ⎯ 
         N2O 
 
 
3. Pesticides [Wagenet and Hutson, 1987]: 
 a) Uninterrupted chain - one reaction path: 
 Gas 
 g1 

 ↑ 
 Parent  Daughter  Daughter 

 pesticide → product 1 → product 2 → Products 
 c1  s1  c2  s2  c3  s3 

 ↓  ↓  ↓ 
 Product  Product  Product 
 
 
 b) Interrupted chain - two independent reaction paths: 
 
 Gas      Gas 
 g1      g4 

 ↑      ↑ 
 Parent  Daughter    Parent 

 pesticide 1 → product 1 → Product  Pesticide 2 → Product 
 c1  s1  c2  s2  c3  s3  c4  s4 

 ↓  ↓    ↓ 
 Product  Product    Product 
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HYDRUS at present considers up to fifteen solutes, which can be either coupled in a unidirectional 
chain or may move independently of each other. 
 The partial differential equations governing nonequilibrium chemical transport of solutes 
involved in a sequential first-order decay chain during transient water flow in a variably saturated 
rigid porous medium are taken as 

 

 
1 11 1 1 1

,1 ,1 ,1

' ' '
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+

, ε (2 )r k sc         k    , n

 (3.2) 

 
where c, s, and g are solute concentrations in the liquid [ML-3], solid [MM-1], and gaseous [ML-3], 
phases, respectively; qi is the i-th component of the volumetric flux density [LT-1], μw, μs , and μg are 
first-order rate constants for solutes in the liquid, solid, and gas phases [T-1], respectively; μw’, μs’, 
and μg’ are similar first-order rate constants providing connections between individual chain species, 
γw, γs, and γg are zero-order rate constants for the liquid [ML-3T-1], solid [T-1], and gas [ML-3T-1] 
phases, respectively; ρ is the soil bulk density [ML-3], av is the air content [L3L-3], S is the sink term 
in the water flow equation (2.1), cr is the concentration of the sink term [ML-3], Dij

w is the dispersion 
coefficient tensor [L2T-1] for the liquid phase, and Dij

g is the diffusion coefficient tensor [L2T-1] for 
the gas phase. As before, the subscripts w, s, and g correspond with the liquid, solid and gas phases, 
respectively; while the subscript k represents the kth chain number, and ns is the number of solutes 
involved in the chain reaction. The indicial notation used in this report assumes summations over 
indices i and j (i,j = 1,2), but not over index k.  The nine zero- and first-order rate constants in (3.1) 
and (3.2) may be used to represent a variety of reactions or transformations including 
biodegradation, volatilization, and precipitation. 
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 HYDRUS assumes nonequilibrium interaction between the solution (c) and adsorbed (s) 
concentrations, and equilibrium interaction between the solution (c) and gas (g) concentrations of the 
solute in the soil system. The adsorption isotherm relating sk and ck is described by a generalized 
nonlinear equation of the form 
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 (3.3) 

 
where ks,k [L3M-1], βk [-] and ηk [L3M-1] are empirical coefficients. The Freundlich, Langmuir, and 
linear adsorption equations are special cases of equation (3.3). When βk=1, equation (3.3) becomes 
the Langmuir equation, when ηk=0, equation (3.3) becomes the Freundlich equation, and when both 
βk=1 and ηk=0, equation (3.3) leads to a linear adsorption isotherm. Solute transport without 
adsorption is described with ks,k=0. While the coefficients ks,k, βk, and ηk in equation (3.3) are 
assumed to be independent of concentration, they are permitted to change as a function of time 
through their dependency on temperature. This feature will be discussed later. 
 The concentrations gk and ck are related by a linear expression of the form 

 
 , (1, )k g k k sg  = k  c                      k  nε  (3.4) 

 
where kg,k is an empirical constant [-] equal to (KHRuTA)-1 [Stumm and Morgan, 1981] in which KH is 
Henry's Law constant [MT2M-1L-2], Ru is the universal gas constant [ML2T-2K-1 M-1] and TA is 
absolute temperature [K]. 
 
 
 3.1.1. Chemical Nonequilibrium 
 
 The concept of two-site sorption [Selim et al., 1977; van Genuchten and Wagenet, 1989] is 
implemented in HYDRUS to permit consideration of nonequilibrium adsorption-desorption 
reactions. The two-site sorption concept assumes that the sorption sites can be divided into two 
fractions: 
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 (1, )e k
k k k ss s s                 k     nε= +  (3.5) 

 
Sorption, sk

e [MM-1], on one fraction of the sites (the type-1 sites) is assumed to be instantaneous, 
while sorption, sk

k [MM-1], on the remaining (type-2) sites is considered to be time-dependent. At 
equilibrium we have for the type-1 (equilibrium) and type-2 (kinetic) sites, respectively 

 
 (1, )e

k k ss fs                        k     nε=  (3.6) 

 
where f is the fraction of exchange sites assumed to be in equilibrium with the solution phase [-].  
Because type-1 sorption sites are always at equilibrium, differentiation of (3.6) gives immediately 
the sorption rate for the type-1 equilibrium sites: 

 
 (1- ) (1, )k

k k ss f s                  k     nε=  (3.7) 
 

 (1, )
e
k k

s
s sf                    k     n
t t

ε∂ ∂
=

∂ ∂
 (3.8) 

 
Sorption on the type-2 nonequilibrium sites is assumed to be a first-order kinetic rate process.  
Following Toride et al. [1993], the mass balance equation for the type-2 sites in the presence of 
production and degradation is given by 

 

 , '
, ,,(1- ) - - ( ) (1- ) (1, )

1
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k

k
s k k k kk
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kk

 s k c f s s f      k     n
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β

βω μ γ εμ
η

⎡ ⎤∂
= + +⎢ ⎥∂ +⎣ ⎦

 (3.9) 

 
where ωk is the first-order rate constant for the kth solute [T-1]. 
 Substituting (3.3) through (3.9) into (3.1) and (3.2), and using the continuity equation 
describing the isothermal Darcian flow of water in a variably saturated porous medium, i.e., 

 

 i

i

q
= - - S

t x
θ ∂∂

∂ ∂
 (3.10) 

 



 

 
 
 36

leads to the following equation 
 

 , 0 ε (1, )k k k
k i ij k k k k s

i i j

c c c
- R - q +  D + F c +G = k  n

t x x x
θ θ

⎛ ⎞∂ ∂ ∂∂
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (3.11) 

 
in which Dij [L2T-1] is an effective dispersion coefficient tensor given by 

 
 , , , , ε (1, )w g

ij k ij k v ij k g k sD = D + a D k k  nθ θ  (3.12) 

 
The coefficients Fk and Gk in (3.11) are defined as 
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where the variable gk accounts for possible changes in the adsorption parameters caused by 
temperature changes in the system as follows (see also section 3.4): 
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The retardation factor Rk [-] in (3.11) is given by 
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 3.1.2. Physical Nonequilibrium 
 
 The concept of two-region, dual-porosity type solute transport [van Genuchten and 
Wierenga, 1976] is implemented in HYDRUS to permit consideration of physical nonequilibrium 
transport. The two-region concept assumes that the liquid phase can be partitioned into mobile 
(flowing), θm [L3L-3], and immobile (stagnant), θim [L3L-3], regions: 

 
 m im= +θ θ θ  (3.17) 

 
and that solute exchange between the two liquid regions can be modeled as a first-order process, i.e., 
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 (3.18) 

 
where cim [ML-3] is the concentration in the immobile region and ωk is the mass transfer coefficient 
for the kth solute [T-1]. 
 Substituting (3.17) and (3.18) into (3.1) and (3.2), the latter two equations modified for 
mobile and immobile regions as shown by van Genuchten and Wagenet [1989], leads to equation 
(3.11) in which θ is replaced with θm and with the coefficients Fk and Gk redefined as follows 
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 (3.20) 

 
 In order to solve equation (3.11), it is necessary to know the water content θ and the 
volumetric flux q. Both variables are obtained from solutions of the Richards' equation. The above 
equations may appear to be relatively complicated. However, by selecting proper values of particular 
coefficients (i.e., γw , γs , γg, μw, μs, μg, μw’, μs’, μg’, η, ks, kg, f, β, ω) the entire system can be 
simplified significantly. Assuming for example that μw’, μs’, μg’, η, and kg are zero, and f and β are 
equal to one, the entire system of equations (3.1) through (3.20) simplifies into a set of equations 
describing the transport of mutually independent solutes, i.e., single-ion transport as applicable to: 
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 (3.21) 

 
 3.1.3. Attachment-Detachment Model 
 
 Virus, colloid, and bacteria transport and fate models commonly employ a modified form 
of the convection-dispersion equation. In this study we define the mass balance equation for 
these applications as:  
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 (3.22) 

 
where c is the (colloid, virus, bacteria) concentration in the aqueous phase [NcL-3], s is the solid 
phase (colloid, virus, bacteria) concentration [NcM-1], subscripts e, 1, and 2 represent equilibrium 
and two kinetic sorption sites, respectively, Nc is a number of colloids (particles), and μw and μs 
represent inactivation and degradation processes in the liquid and solid phases, respectively.  

While sorption to equilibrium sites can be described similarly as before using (3.3), mass 
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transfer between the aqueous and both solid kinetic phases can be described as (note that we now 
dropped subscripts 1 and 2): 
 

 a d
s k c k s
t

ρ θ ψ ρ∂
= −

∂
 (3.23) 

 
where ka is the first-order deposition (attachment) coefficient [T-1], kd is the first-order 
entrainment (detachment) coefficient [T-1], and ψ is a dimensionless colloid retention function [-
]. The attachment and detachment coefficients in (3.23) have been found to strongly depend 
upon water content, with attachment significantly increasing as the water content decreases.   
 To simulate reductions in the attachment coefficient due to filling of favorable sorption 
sites, ψ is sometimes assumed to decrease with increasing colloid mass retention. A Langmuirian 
dynamics [Adamczyk et al., 1994] equation has been proposed for ψ to describe this blocking 
phenomenon: 
 

 max

max max

1s s s
s s

ψ −
= = −  (3.24) 

 
in which smax is the maximum solid phase concentration [NcM-1]. Blocking coefficients listed 
below are implemented only into a two-dimensional formulation. Conversely, enhanced colloid 
retention during porous medium ripening can theoretically be described using a functional form 
of ψ that increases with increasing mass of retained colloids: 
 
 ( )maxmax 1, ssψ =  (3.25) 

 
Johnson and Elimelech [1995] proposed the so-called random sequential adsorption 

model to describe blocking of the sorption sites: 
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c

a a a s s

bs
s s

d b

b
s

sa
s

ψ

ψ

= − + + <

−
= >

=

=

 (3.26) 

 
Finally, Bradford et al. [2003] hypothesized that the influence of straining and 

attachment processes on colloid retention can be separated into two distinct components. They 
suggested the following depth-dependent blocking coefficient for the straining process: 
 

 0c

c

d z z
d

β

ψ
−

⎛ ⎞+ −
= ⎜ ⎟

⎝ ⎠
 (3.27) 

 
where dc is the diameter of the sand grains [L], z0 is the coordinate of the location where the 
straining process starts [L] (the surface of the soil profile, or interface between soil layers), and β 
is an empirical factor (with an optimal value of 0.43 [Bradford et al., 2003]) [-]. 

The attachment coefficient is often calculated using filtration theory [Logan et al., 1995], 
a quasi-empirical formulation in terms of the median grain diameter of the porous medium (often 
termed the collector), the pore-water velocity, and collector and collision (or sticking) 
efficiencies accounting for colloid removal due to diffusion, interception and gravitational 
sedimentation [Rajagopalan and Tien, 1976; Logan et al., 1995]: 
 

 3(1 )
2a

c

k v
d

θ ηα−
=  (3.28) 

 
where dc is the diameter of the sand grains [L], α is the sticking efficiency (ratio of the rate of 
particles that stick to a collector to the rate they strike the collector) [-], v is the pore water 
velocity [LT-1], and η is the single-collector efficiency [-]: 
 
 
 1/3 2/3 1/8 15/8 1.2 0.44 0.00338s Pe s Lo R s G RA N A N N A N Nη − −= + +  (3.29) 
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where the first, second, and third terms represent removal by diffusion, interception, and 
gravitational sedimentation, respectively, and where NPe is the Peclet number [-], NR is the 
interception number [-], NG is the gravitation number [-], NLo accounts for the contribution of 
particle London-van der Walls attractive forces to particle removal [-], and As is a correction 
factor [-] as follows: 
 

 
( )

( )

5

5 6

1/ 3

2 1

2 3 3 2

1

sA
γ

γ γ γ

γ θ

−
=

− + −

= −

 (3.30) 

 
The dimensionless Peclet number in (3.29)  is calculated as follows: 

 

 
3 p c

Pe

d d q
N

kT
π μ

=  (3.31) 

 
where μ is the fluid viscosity (= 0.00093 Pa s) [ML-1T-1], dp  is the diameter of the particle (e.g., 
virus, bacteria) (= 0.95 μm = 0.95e-6 m) [L], q is the Darcy’s flux [LT-1], k is the Boltzman 
constant (= 1.38048e-23 J/K) [M L2T-2K-1],  and T is the temperature (= 298 K) [K]. Finally, the 
interception number, NR, the gravitation number, NG, and the number representing London-van 
der Walls attractive forces, NLo, in (3.29) are calculated using: 
 

 p
R

c

d
N

d
=  (3.32) 

 
( ) 2

18
p f p

G

g d
N

q

ρ ρ

μ

−
=  (3.33) 

 2

4
9Lo

p

HN
d qπ μ

=  (3.34) 

 
where H is the Hamaker constant (= 1e-20 J) [ML2T-2], g is the gravitational acceleration (= 9.81 
m s-2) [LT-2], ρp is the bacterial density (= 1080 kg m-3) [ML-3], and ρf is the fluid density (= 998 
kg m-3) [ML-3]. 

The model described above using equation (3.22) can be used in many different ways. 
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For example, one can assume that the soil has two sorption sites, s1 and s2, each having their own 
attachment and detachment constants. This model has been used to describe virus transport in 
sand dunes by Schijven and Šimůnek [2002]. Sorption sites s1 and s2 can be used to describe 
straining and attachment, respectively, as was done by Bradford et al. [2002, 2003, 2004]. One 
may also assume that one sorption site represents sorption to the solid phase, while the other site 
represents removal of particles by means of attachment to the air-water interface. 
 
 
3.2. Initial and Boundary Conditions 
 
 The solution of (3.11) requires knowledge of the initial concentration within the flow region, 
Ω, i.e., 

 

 

,

( , , , 0) ( , , )

( , , 0) ( , , )
( , , 0) ( , , )

i

k k
i

im im i

c x y z  = c x y z

s x y z = s x y z
c x y z = c x y z

 (3.35) 

 

where ci [ML-3], cim,i [ML-3] and si
k [-] are prescribed functions of x and z. The initial condition for si

k 
must be specified only when nonequilibrium adsorption is considered. The subscript k is dropped in 
(3.35) and throughout the remainder of this report, thus assuming that the transport-related equations 
in the theoretical development and numerical solution apply to each of the solutes in the decay chain. 
 Two types of boundary conditions (Dirichlet and Cauchy type conditions) can be specified 
along the boundary of Ω. First-type (or Dirichlet type) boundary conditions prescribe the 
concentration along a boundary segment ΓD: 
 

 0( , , , ) ( , , , ) for ( , , )  ε  Dc x y z t = c x y z  t        x y z Γ  (3.36) 

 
whereas third-type (Cauchy type) boundary conditions may be used to prescribe the concentration 
flux along a boundary segment ΓC as follows: 

 

 0 for ( , , )  ε  Cij i i i i i
j

c- D n + q n c = q n c          x y z
x

θ ∂
Γ

∂
 (3.37) 
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in which qi ni represents the outward fluid flux, ni is the outward unit normal vector and c0 is the 
concentration of the incoming fluid [ML-3]. In some cases, for example when ΓC is an impermeable 
boundary (qini=0) or when water flow is directed out of the region, (3.37) reduces to a second-type 
(Neumann type) boundary condition of the form: 

 

 0 for ( , , )  ε  Nij i
j

c       D n =                        x y z
x

θ ∂
Γ

∂
 (3.38) 

 
 A different type of boundary condition is needed for volatile solutes when they are present in 
both the liquid and gas phases. This situation requires a third-type boundary condition which has on 
the right-hand side an additional term to account for gas diffusion through a stagnant boundary layer 
of thickness d [L] on the soil surface. The additional solute flux is proportional to the difference in 
gas concentrations above and below this boundary layer [Jury et al., 1983]. This modified boundary 
condition has the form 
 

 0 ( ) for ( , , )  ε  g
Cij i i i i i g atm

j

Dc- D n +q n c = q n c + k c - g          x y z
x d

θ ∂
Γ

∂
 (3.39) 

 
where Dg is the molecular diffusion coefficient in the gas phase [L2T-1] and gatm is the gas 
concentration above the stagnant boundary layer [ML-3]. We note that Jury et al. [1983] assumed 
gatm to be zero. Similarly as for (3.37), (3.39) reduces to a second-type (Neumann type) boundary 
condition when water flow is zero or directed out of the region: 

 

 ( ) for ( , , )  ε  g
Nij i g atm

j

Dc- D n = k c - g                 x y z
x d

θ ∂
Γ

∂
 (3.40) 

 
Equations (3.39) and (3.40) can only be used when the additional gas diffusion flux is positive.  Jury 
et al. [1983] discussed how to estimate the thickness of the boundary layer, d, and recommended 
d=0.5 cm as a good average value for a bare surface. 
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3.3. Effective Dispersion Coefficient 
 
 The components of the dispersion tensor in the liquid phase, Dij

w, are given by [Bear, 1972] 

 

 ( ) j iw
ij T ij L T w w ij

q q
D = D | q | + D - D + D

| q |
θ δ θ τ δ  (3.41) 

 
where Dw is the molecular diffusion coefficient in free water [L2T-1], τw is a tortuosity factor in the 
liquid phase [-], q is the absolute value of the Darcian fluid flux density [LT-1], δij is the Kronecker 
delta function (δij=1 if i=j, and δij=0 if i≠j), and DL and DT are the longitudinal and transverse 
dispersivities, respectively [L]. After adding the diffusion contribution from the gas phase, the 
individual components of the effective dispersion tensor in the soil matrix for three-dimensional 
transport are as follows: 
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θ θ τ τ

θ

θ

θ y zq q
| q |

 (3.42) 

 
where Dg is the molecular diffusion coefficient in the gas phase [L2T-1] and τg is a tortuosity factor in 
the gas phase [-]. Terms with y in (3.42) are equal to zero in a two-dimensional formulation. 
 The tortuosity factors for both phases are evaluated in HYDRUS as a function of the water 
and gas contents using the relationship of Millington and Quirk [1961]: 
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 (3.43) 

 
 
3.4. Temperature Dependence of Transport and Reaction Coefficients 
 
 Several of the diffusion (Dw, Dg), zero-order production (γw, γs, γg ), first-order degradation 
(μw’, μs’, μg’, μw, μs, and μg), and adsorption (ks, kg, β, η, ω) coefficients may be strongly dependent 
upon temperature. HYDRUS assumes that this dependency can be expressed by the Arrhenius 
equation [Stumm and Morgan, 1981]. After some modification, this equation can be expressed in the 
general form 
 

 ( - )exp
A A

a r
T r A A

u r

E T Ta = a  
R T T

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3.44) 

 
where ar and aT are the values of the coefficient being considered at a reference absolute temperature 
Tr

A and absolute temperature TA, respectively; Ru is the universal gas constant, and Ea [ML2T-2M-1] is 
the activation energy of the particular reaction or process being modeled. 
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 4. HEAT TRANSPORT 
 
4.1. Governing Heat Transport Equations 
 
 Neglecting the effects of water vapor diffusion, two- and three-dimensional heat transport 
can be described as [Sophocleous, 1979]: 

 

 ( ) ( )ij w i
i j i

T T TC = - C q  
t x x x

θ λ θ
⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (4.1) 

 
where λij(θ) is the apparent thermal conductivity of the soil [MLT-3K-1] (e.g. Wm-1K-1) and C(θ) and 
Cw are the volumetric heat capacities [ML-1T-2K-1] (e.g. Jm-3K-1) of the porous medium and the 
liquid phase, respectively. Volumetric heat capacity is defined as the product of the bulk density and 
gravimetric heat capacity. The first term on the right-hand side of (4.1) represents heat flow due to 
conduction and the second term accounts for heat being transported by flowing water.  We do not 
consider the transfer of latent heat by vapor movement.According to de Vries [1963] the volumetric 
heat capacity can be expressed as 

  
 6 -1-3 o( ) (1.92 2.51 4.18 ) ( J  )10 Cmp n n o o w g v n oC C C C C a     θ θ θ θ θ θ θ= + + + ≈ + +  (4.2) 

 
where θ refers to a volumetric fraction [L3L-3], and subscripts n, o, g, w represent solid phase, 
organic matter, gas phase and liquid phase, respectively. 
 
 
4.2. Apparent Thermal Conductivity Coefficient 
 
 The apparent thermal conductivity, λij(θ), combines the thermal conductivity λ0(θ) of the 
porous medium (solid plus water) in the absence of flow, and the macrodispersivity which is 
assumed to be a linear function of the velocity [de Marsily, 1986]. In analogy with the dispersion 
coefficient for solute transport, the apparent thermal conductivity λij(θ) is given by [Šimůnek and 
Suarez, 1993b] 
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 0( ) ( ) ( )j i
ij T w ij L T w ij

q q
C  | q | + - c  +

| q |
λ θ λ δ λ λ λ θ δ=  (4.3) 

 
where q is the absolute value of the Darcian fluid flux density [LT-1], δij is the Kronecker delta 
function as before, and λL and λT are the longitudinal and transverse thermal dispersivities [L], 
respectively. The individual components of the thermal conductivity tensor for three-dimensional 
transport are as follows: 
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 (4.4) 

 
The volumetric heat capacity of the liquid phase is included here in the definition of the thermal 
conductivity in order to have the dimensions of the thermal dispersivities in the length units [de 
Marsily, 1986]. The thermal conductivity, λ0(θ), accounts for the tortuosity of the porous medium, 
and is described with the simple equation [Chung and Horton, 1987] 

 
 0.5

0 1 2 2( ) w w= b +b +bλ θ θ θ  (4.5) 

 
where b1, b2 and b3 are empirical parameters [MLT-3K-1] (e.g. Wm-1K-1). 
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4.3. Initial and Boundary Conditions 
 
 Equation (4.1) will be solved subject to the general initial condition 

 
 ( , , ,0) ( , , )iT x y z = T x y z   (4.6) 

where Ti is a prescribed function of x and z. 
 Two types of boundary conditions (Dirichlet and Cauchy type conditions) can again be 
specified along the boundary of Ω. First-type (or Dirichlet type) boundary conditions prescribe the 
temperature along a boundary segment ΓD: 

 
 0( , , , ) ( , , , ) for ( , , )  ε  DT x y z t = T x y z t              x y z Γ  (4.7) 

 
whereas third-type (Cauchy type) boundary conditions prescribe the heat flux along a boundary 
segment ΓC as follows 

 

 0 for ( , , )  ε  Cij i w i i w i i
j

T- n +Tc q n = T C q n      x y z
x

λ ∂
Γ

∂
 (4.8) 

 
in which qi ni represents the outward fluid flux, ni is the outward unit normal vector and T0 is the 
temperature of the incoming fluid. When ΓC is an impermeable boundary (qini=0) or when water 
flow is directed out of the region, (4.8) reduces to a second-type (Neumann type) boundary 
condition of the form: 

 

 0 for ( , , )  ε  Nij i
j

T n =             x y z
x

λ ∂
Γ

∂
 (4.9) 

 
 The atmospheric boundary condition for soil temperature is assumed to be given by a sine 
function as follows [Kirkham and Powers, 1972]: 
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0
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t
π π⎛ ⎞
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 (4.10) 
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where tp is the period of time [T] necessary to complete one cycle of the sine wave (taken to be 1 
day), T  is the average temperature at the soil surface [K] during period tp, A is the amplitude of the 
sine wave [K], and t* is the local time [T] within the period tp. The second term within the argument 
of the sine function is included to allow the highest temperature to occur at 1 p.m. 
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 5. NUMERICAL SOLUTION OF THE WATER FLOW EQUATION 
 
 The Galerkin finite element method with linear basis functions is used to obtain a solution of 
the flow equation (2.1) subject to the imposed initial and boundary conditions. Since the Galerkin 
method is relatively standard and has been covered in detail elsewhere [Neuman, 1975; Zienkiewicz, 
1977; Pinder and Gray, 1977], only the most pertinent steps in the solution process are given here. 
 
 
5.1. Space Discretization 
 
 The flow region is divided into a network of triangular (2D) or tetrahedral (3D) elements. 
The corners of these elements are taken to be the nodal points. The dependent variable, the pressure 
head function h(x,y,z,t), is approximated by a function h’(x,y,z,t) as follows 

 

 
1

( , , , ) ( , , ) ( )
N

n n
n=

h’ x y z t = x y z h t  φ∑  (5.1) 

 
where φn are piecewise linear basis functions satisfying the condition φn(xm ,zm)=δnm, hn are unknown 
coefficients representing the solution of (2.1) at the nodal points, and N is the total number of nodal 
points. 
 The Galerkin method postulates that the differential operator associated with the Richards' 
equation (2.1) is orthogonal to each of the N basis functions, i.e., 

 

 - 0A A
ij iz n

i j

h K K K  S  d
t x x
θ φ

Ω

⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪+ + Ω =⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∫  (5.2) 

 
Applying Green's first identity to (5.2), and replacing h by hΝ, leads to 
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∑ ∑∫ ∫
 (5.3) 

 
where Ωe represents the domain occupied by element e, and Γe is a boundary segment of element e. 
Natural flux-type (Neumann) and gradient type boundary conditions can be immediately 
incorporated into the numerical scheme by specifying the line integral in equation (5.3).   
 After imposing additional simplifying assumptions to be discussed later, and performing 
integration over the elements, the procedure leads to a system of time-dependent ordinary 
differential equations with nonlinear coefficients. In matrix form, these equations are given by 
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 1 1
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where the overlined variables represent average values over an element e, the subscripts i and j are 
space direction indices (i,j = 1,2(,3)). For a two-dimensional problem: 
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 (5.10) 

For tetrahedral element vertexed by nodes 1, 2, 3, and 4 of a three-dimensional problem: 
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Equation (5.8) is valid for a flux-type boundary condition. For a gradient-type boundary condition 
the variable σ1 in (5.8) must be replaced by the product of the hydraulic conductivity K and the 
prescribed gradient σ2 (=1). Equations (5.5) through (5.9) hold for flow in a three-dimensional 
Cartesian (x,y,z) domain, a two-dimensional Cartesian (x,z) domain, as well as for flow in an 
axisymmetric (x,z) system in which x is used as the radial coordinate. For two-dimensional plane 
flow we have 

 

 1
2

n
n

L= =κ λ  (5.13) 

 
while for axisymmetric flow (using two-dimensional formulation) 
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2

2
3 3

i j k n n
n n

x + x + x x + x’= = Lκ π λ π  (5.14) 

 
The subscripts i, j and k in equations (5.10) and (5.14) represent the three corners of a triangular 
element e. Ae is the area of a two-dimensional element e, Ve is the volume of a three-dimensional 
element e, K  and S  are the average hydraulic conductivity and root water extraction values over 
element e, Ln is the length of the boundary segment connected to node n, and x’n is the x-coordinate 
of a boundary node adjacent to node n. The symbol σn in equation (5.8) stands for the flux [LT-1] 
across the boundary in the vicinity of boundary node n (positive when directed outward of the 
system). The boundary flux is assumed to be uniform over each boundary segment. The entries of 
the vector Qn are zero at all internal nodes, which do not act as sources or sinks for water.  

 The numerical procedure leading to (5.4) incorporates two important assumptions in addition 
to those related to the Galerkin finite element approach. One assumption concerns the time 
derivatives of the nodal values of the water content in (5.4). These time derivatives were weighted 
according to   
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This assumption implements mass-lumping, which has been shown to improve the rate of 
convergence of the iterative solution process [e.g., Neuman, 1973].  
 A second assumption in the numerical scheme is related to the anisotropy tensor KA which is 
taken to be constant over each element. By contrast, the water content θ, the hydraulic conductivity 
K, the soil water capacity C, and the root water extraction rate S, at a given point in time are assumed 
to vary linearly over each element, e. For example, the water content is expanded over each element 
as follows: 
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where n stands for the corners of element e. The advantage of linear interpolation is that no 
numerical integration is needed to evaluate the coefficients in (5.4).   
 
 
5.2. Time Discretization 
 
 Integration of (5.4) in time is achieved by discretizing the time domain into a sequence of 
finite intervals and replacing the time derivatives by finite differences. An implicit (backward) finite 
difference scheme is used for both saturated and unsaturated conditions: 
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where j+1 denotes the current time level at which the solution is being considered, j refers to the 
previous time level, and Δtj=tj+1-tj. Equation (5.17) represents the final set of algebraic equations to 
be solved. Since the coefficients θ, A, B, D, and Q (Q for only gradient-type boundary conditions) 
are functions of h, the set of equations is generally highly nonlinear. Note that the vectors D and Q 
are evaluated at the old time level. 
 
 
5.3. Numerical Solution Strategy 
 
5.3.1. Iterative Process 
 
 Because of the nonlinear nature of (5.17), an iterative process must be used to obtain 
solutions of the global matrix equation at each new time step. For each iteration a system of 
linearized algebraic equations is first derived from (5.17), which, after incorporation of the boundary 
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conditions, is solved using either Gaussian elimination or the conjugate gradient method (see Section 
8.5). The Gaussian elimination process takes advantage of the banded and symmetric features of the 
coefficient matrices in (5.17). After inversion, the coefficients in (5.17) are re-evaluated using the 
first solution, and the new equations are again solved. The iterative process continues until a 
satisfactory degree of convergence is obtained, i.e., until at all nodes in the saturated (or unsaturated) 
region the absolute change in pressure head (or water content) between two successive iterations 
becomes less than some small value determined by the imposed absolute pressure head (or water 
content) tolerance [Šimůnek and van Genuchten, 1994]. The first estimate (at zero iteration) of the 
unknown pressure heads at each time step is obtained by extrapolation from the pressure head values 
at the previous two time levels. 
 
 
5.3.2. Treatment of the Water Capacity Term 
 
 The iteration process is extremely sensitive to the method used for evaluating the water 
content term (Δθ/Δt) in equation (5.17). The present version of HYDRUS code uses the "mass-
conservative" method proposed by Celia et al. [1990]. Their method has been shown to provide 
excellent results in terms of minimizing the mass balance error. The mass-conservative method 
proceeds by separating the water content term into two parts: 
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where k+1 and k denote the current and previous iteration levels, respectively; and j+1 and j the 
current and previous time levels, respectively. Notice that the second term on the right hand side of 
(5.18) is known prior to the current iteration. The first term on the right hand side can be expressed 
in terms of the pressure head, so that (5.18) becomes 

 

 [ ]
{ } { }

[ ][ ]
{ } { }

[ ]
{ } { }1

1 1 1 1
1

k k k

j j j j j j
j

j j j

h h
F F C F

t t t

θ θ θ θ+

+ + + +

+

− − −
= +

Δ Δ Δ
 (5.19) 

 
where Cnm=δnmCn, in which Cn represents the nodal value of the soil water capacity. The first term 
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on the right hand side of (5.19) should vanish at the end of the iteration process if the numerical 
solution converges. This particular feature guarantees relatively small mass balance errors in the 
solution. 
 
 
5.3.3. Time Control 
 
 Three different time discretizations are introduced in HYDRUS: (1) time discretizations 
associated with the numerical solution, (2) time discretizations associated with the implementation 
of boundary conditions, and (3) time discretizations which provide printed output of the simulation 
results (e.g., nodal values of dependent variables, water and solute mass balance components, and 
other information about the flow regime). 
 Discretizations 2 and 3 are mutually independent; they generally involve variable time steps 
as described in the input data file. Discretization 1 starts with a prescribed initial time increment, Δt. 
This time increment is automatically adjusted at each time level according to the following rules 
[Mls, 1982; Vogel, 1987]: 
 a. Discretization 1 must coincide with time values resulting from discretizations 2 and 3. 
 b. Time increments cannot become less than a preselected minimum time step, Δtmin, nor 

exceed a maximum time step, Δtmax (i.e., Δtmin≤Δt ≤Δtmax). 
 c. If, during a particular time step, the number of iterations necessary to reach convergence 

is ≤3, the time increment for the next time step is increased by multiplying Δt by a 
predetermined constant >1 (usually between 1.1 and 1.5). If the number of iterations is 
≥7, Δt for the next time level is multiplied by a constant <1 (usually between 0.3 and 
0.9). 

 d. If, during a particular time step, the number of iterations at any time level becomes 
greater than a prescribed maximum (usually between 10 and 50), the iterative process for 
that time level is terminated. The time step is subsequently reset to Δt/3, and the iterative 
process restarted. 

The selection of optimal time steps, Δt, is also influenced by the solution scheme for solute transport 
(see Section 6.4.6). 
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5.3.4. Treatment of Pressure Head Boundary Conditions 
 
 Finite element equations corresponding to Dirichlet nodes where the pressure head is 
prescribed can, at least in principle, be eliminated from the global matrix equation. An alternative 
and numerically simpler approach is to replace the Dirichlet finite element equations by dummy 
expressions of the form [Neuman, 1974]  
 

 nm m nhδ ψ=  (5.20) 

 
where δnm is the Kronecker delta and ψn is the prescribed value of the pressure head at node n. The 
values of hn in all other equations are set equal to ψn and the appropriate entries containing ψn in the 
left hand side matrix are incorporated into the known vector on the right-hand side of the global 
matrix equation. When done properly, this rearrangement will preserve symmetry in the matrix 
equation. This procedure is applied only when Gaussian elimination is used to solve the matrix 
equations. When the conjugate gradient solver is used, then the finite element equation representing 
the Dirichlet node is modified as follows. The right hand side of this equation is set equal to the 
prescribed pressure head multiplied by a large number (1030), and entry on the left hand side 
representing the Dirichlet node is set equal to this large number. After solving for all pressure heads, 
the value of the flux Qn can be calculated explicitly and accurately from the original finite element 
equation associated with node n [e.g., Lynch, 1984]. 
 
 
5.3.5. Flux and Gradient Boundary Conditions 
 
 The values of the fluxes Qn at nodal points along prescribed flux and gradient boundaries are 
computed according to equation (5.8). Internal nodes which act as Neumann type sources or sinks 
have values of Qn equal to the imposed fluid injection or extraction rate. 
 
 
5.3.6. Atmospheric Boundary Conditions and Seepage Faces 
 
   Atmospheric boundaries are simulated by applying either prescribed head or prescribed flux 
boundary conditions depending upon whether equation (2.58) or (2.59) is satisfied [Neuman, 1974]. 
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If (2.59) is not satisfied, node n becomes a prescribed head boundary. If, at any point in time during 
the computations, the calculated flux exceeds the specified potential flux in (2.47), the node will be 
assigned a flux equal to the potential value and treated again as a prescribed flux boundary. 
 All nodes expected to be part of a seepage face during code execution must be identified a 
priori. During each iteration, the saturated part of a potential seepage face is treated as a prescribed 
pressure head boundary with h=0, while the unsaturated part is treated as a prescribed flux boundary 
with Q=0. The lengths of the two surface segments are continually adjusted [Neuman, 1974] during 
the iterative process until the calculated values of Q (equation (5.8)) along the saturated part, and the 
calculated values of h along the unsaturated part, are all negative, thus indicating that water is 
leaving the flow region through the saturated part of the surface boundary only.  
 
 
5.3.7. Tile Drains as Boundary Conditions 
 
 The representation of tile drains as boundary conditions is based on studies by Vimoke et al. 
[1963] and Fipps et al. [1986]. The approach uses results of electric analog experiments conducted 
by Vimoke and Taylor [1962] who reasoned that drains can be represented by nodal points in a 
regular finite element mesh, provided adjustments are made in the hydraulic conductivity, K, of 
neighboring elements. The adjustments should correspond to changes in the electric resistance of 
conducting paper as follows 

 
 drain dK KC=  (5.21) 

 
where Kdrain is the adjusted conductivity [LT-1], and Cd is the correction factor [-]. Cd is determined 
from the ratio of the effective radius, de [L], of the drain to the side length, D [L], of the square 
formed by finite elements surrounding the drain node [Vimoke at al., 1962]: 
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where Z0’ is the characteristic impedance of free space (≈376.7 ohms), μ0 is the permeability of free 
space, ε0 is the permittivity of free space, and Z0 is the characteristic impedance of a transmission 
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line analog of the drain. The coefficients in (5.22) are given by 
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where de is the effective drain diameter to be calculated from the number and size of small openings 
in the drain tube [Mohammad and Skaggs, 1984], and D is the size of the square in the finite element 
mesh surrounding the drain having adjusted hydraulic conductivities. The approach above assumes 
that the node representing a drain must be surrounded by finite elements (either triangular or 
quadrilateral), which form a square whose hydraulic conductivities are adjusted according to (5.21). 
This method of implementing drains by means of a boundary condition gives an efficient, yet 
relatively accurate, prediction of the hydraulic head in the immediate vicinity of the drain, as well as 
of the drain flow rate [Fipps et al., 1986]. More recent studies have shown that the correction factor, 
Cd, could be further reduced by a factor of 2 [Rogers and Fouss, 1989] or 4 [Tseng, 1994, personal 
communication]. These two studies compared numerical simulations of the flow of ponded water 
into a tile drain system with an analytical solution given by Kirkham [1949]. Pressure head contours 
calculated numerically with the original correction factor Cd (5.22), as well as with the additionally 
reduced correction factor Cd/4, were compared with the analytical results in Šimůnek et al. [1994]. 
 
 
5.3.8. Water Balance Computations 
 
 The HYDRUS code performs water balance computations at prescribed times for several 
preselected subregions of the flow domain. The water balance information for each subregion 
consists of the actual volume of water, V ([L2] or [L3]), in that subregion, and the rate, O ([L2T-1] or 
[L3T-1]), of inflow or outflow to or from the subregion. V and O are given by  
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and 

 new oldV VO
t

−
=  (5.25) 

 
respectively, where θi, θj θk, and θl are water contents evaluated at the corner nodes of element e, and 
where Vnew and Vold are volumes of water in the subregion computed at the current and previous time 
levels, respectively. The summation in (5.24) is taken over all elements within the subregion.  
 The absolute error in the mass balance is calculated as 
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where Vt and V0 are the volumes of water in the flow domain at time t and zero, respectively, as 
calculated with (5.24).  The third term on the right-hand side represents the cumulative root water 
uptake amount, while the fourth term gives the cumulative flux through nodes, nΓ, located along the 
boundary of the flow domain or at internal source and sink nodes. 
 The accuracy of the numerical solution is evaluated in terms of the relative error, εr

w [%], in 
the water mass balance as follows: 
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where Vt

e and V0
e are the volumes of water in element e at times t and zero, respectively. Note that 

HYDRUS does not relate the absolute error to the volume of water in the flow domain, but instead 
to the maximum value of two quantities. The first quantity represents the sum of the absolute 
changes in water content over all elements, whereas the second quantity is the sum of the absolute 
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values of all fluxes in and out of the flow domain. This criterion is much stricter than the usual 
criterion involving the total volume of water in the flow domain. This is because cumulative 
boundary fluxes are often much smaller than the volume in the domain, especially at the beginning 
of the simulation. 
 
 
5.3.9. Computation of Nodal Fluxes 
 
 Components of the Darcian flux are computed at each time level during the simulation only 
when the water flow and solute transport equations are solved simultaneously. When the flow 
equation is being solved alone, the flux components are calculated only at selected print times. The 
x- and z-components of the nodal fluxes for a two-dimensional problem are computed for each node 
n according to: 
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and x-, y- and z-components for a three-dimensional problem as follows: 
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where Ne is the number of sub-elements en adjacent to node n. Einstein's summation convention is 
not used in (5.28). 
 
 
5.3.10. Water Uptake by Plant Roots 
 
 HYDRUS considers the root zone to consist of all nodes, n, for which the potential root 
water uptake distribution, b (see Section 2.2), is greater than zero. The root water extraction rate is 
assumed to vary linearly over each element; this leads to approximation (5.9) for the root water 
extraction term Dn in the global matrix equation. The values of the actual root extraction rate Sn in 
(5.9) are evaluated with (2.15). In order to speed up the calculations, the extraction rates Sn are 
calculated at the old time level and are not updated during the iterative solution process at a given 
time step. HYDRUS calculates the total rate of transpiration per unit soil surface length using the 
equation 
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in which the summation takes place over all elements within the root zone. 
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5.3.11. Evaluation of the Soil Hydraulic Properties 
 
 At the beginning of a numerical simulation, HYDRUS generates for each soil type in the 
flow domain a table of water contents, hydraulic conductivities, and specific water capacities from 
the specified set of hydraulic parameters. The values of θi, Ki and Ci in the table are evaluated at 
prescribed pressure heads hi within a specified interval (ha, hb). The entries in the table are generated 
such that 
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which means that the spacing between two consecutive pressure head values increases in a 
logarithmic fashion. Values for the hydraulic properties, θ(h), K(h) and C(h), are computed during 
the iterative solution process using linear interpolation between the entries in the table. If an 
argument h falls outside the prescribed interval (ha, hb), the hydraulic characteristics are evaluated 
directly from the hydraulic functions, i.e., without interpolation. The above interpolation technique 
was found to be much faster computationally than direct evaluation of the hydraulic functions over 
the entire range of pressure heads, except when very simple hydraulic models were used.  
 
 
5.3.12. Implementation of Hydraulic Conductivity Anisotropy 
 
 Since the hydraulic conductivity anisotropy tensor, KA, is assumed to be symmetric, it is 
possible to define at any point in the flow domain a local coordinate system for which the tensor KA 
is diagonal (i.e., having zeroes everywhere except on the diagonal). The diagonal entries K1

A and K2
A 

(and K3
A for 3D) of KA are referred to as the principal components of KA.   

 The HYDRUS code permits one to vary the orientation of the local principal directions from 
element to element. For this purpose, the local coordinate axes are subjected to a rotation such that 
they coincide with the principal directions of the tensor KA. The principal components K1

A and K2
A 

(and K3
A for 3D), together with the angle ωa (the cosines of angles) between the principal direction 

of K1
A and the x-axis (axes) of the global coordinate system, are specified for each element. Each 

locally determined tensor KA is transformed to the global coordinate system at the beginning of the 
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simulation using the following rules for a two-dimensional problem: 
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and for a three-dimensional problem: 
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 (5.33) 

 
where aij represents cosine of angle between the ith principal direction of the tensor KA and the j-axis 
of the global coordinate system. 
 
5.3.13. Steady-State Analysis 
 
 All transient flow problems are solved by time marching until a prescribed time is reached.  
The steady-state problem can be solved in the same way, i.e., by time marching until two successive 
solutions differ less than some prescribed pressure head tolerance. HYDRUS implements a faster 
way of obtaining the steady-state solution without having to go through a large number of time steps. 
The steady-state solution for a set of imposed boundary conditions is obtained directly during one set 
of iterations at the first time step by equating the time derivative term in the Richards' equation (2.1) 
to zero. 
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 6. NUMERICAL SOLUTION OF THE SOLUTE TRANSPORT EQUATION 
 
 The Galerkin finite element method is also used to solve the solute and heat transport 
equations (equations (3.11) and (4.1), respectively) subject to appropriate initial and boundary 
conditions. Since the heat transport equation (4.1) has the same mathematical form as the 
(linearized) solute transport equation (3.11), the numerical solution will be given here only for solute 
transport. The solution procedure largely parallels the approach used in Section 5 for the flow 
equation. 
 
6.1. Space Discretization 
 
 The dependent variable, the concentration function c(x,y,z,t), is approximated by a finite 
series c’ (x,y,z,t) of the form 
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where φn are the selected linear basis functions, cn are the unknown time dependent coefficients 
which represent solutions of (5.11) at the finite element nodal points and, as before, N is the total 
number of nodal points. Application of the standard Galerkin method leads to the following set of N 
equations 
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Application of Green's theorem to the second derivatives in (6.2) and substitution of c by c’ results in 
the following system of time-dependent differential equations 
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or in matrix form: 
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in which the overlined variables represent average values over a given element e. The notation in the 
above equations is similar as in (5.10). The boundary integral in (6.3) represents the dispersive flux, 
Qn

D, across the boundary and will be discussed later in Section 6.3.4. 
 The derivation of equations (6.5) through (6.7) invoked several important assumptions in 
addition to those involved in the Galerkin finite element approach [Huyakorn and Pinder, 1983; van 
Genuchten, 1978]. First, the different coefficients under the integral signs (θR, qi, θDij, F, G) were 
expanded linearly over each element, similarly as for the dependent variable, i.e., in terms of their 
nodal values and associated basis functions. Second, mass lumping was invoked by redefining the 
nodal values of the time derivative in (6.4) as weighted averages over the entire flow region: 
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6.2. Time Discretization 
 
 The Galerkin method is used only for approximating the spatial derivatives while the time 
derivatives are discretized by means of finite differences. A first-order approximation of the time 
derivatives leads to the following set of algebraic equations: 
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where j and j+1 denote the previous and current time levels, respectively; Δt is the time increment, 
and ε is a time weighing factor. The incorporation of the dispersion flux, Qn

D, into matrix [Q] and 
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vector {f} is discussed in Section 6.3.4. The coefficient matrix [Q]j+ε is evaluated using weighted 
averages of the current and previous nodal values of θ and R. Equation (6.9) can be rewritten in the 
form: 
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 Higher-order approximations for the time derivative in the transport equation were derived 
by van Genuchten [1976, 1978]. The higher-order effects may be incorporated into the transport 
equation by introducing time-dependent dispersion corrections as follows 
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where the superscripts + and - indicate evaluation at the old and new time levels, respectively.  
 
 
6.3. Numerical Solution for Linear Nonequilibrium Solute Transport 
 
 The same solution procedure as described in Sections 6.1 and 6.2 is used here for either 
linear equilibrium or nonlinear (both equilibrium and nonequilibrium) solute transport. However, 
linear nonequilibrium transport is implemented somewhat differently. First, equation (3.9), 
simplified for linear adsorption, is discretized using finite differences as follows 
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The new adsorbed concentration for type-2 sorption sites follows directly from (6.13): 
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This term is incorporated directly into F and G so that they have the following values: 
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where F*

t+Δt and G*
t+Δt are the values of parameters F and G for linear nonequilibrium solute 

transport, and Ft+Δt' and Gt+Δt' are the original values of F and G. The above procedure avoids having 
to solve two simultaneous equations for linear nonequilibrium transport. Once the transport equation 
with the modified F and G parameters is solved using the methods discussed earlier to yield the 
concentration ct+Δt, equation (6.14) is used to update the adsorbed concentration st+Δt. 
 For physical nonequilibrium (dual-porosity) transport, equation (3.18), simplified for linear 
adsorption, is discretized using finite differences as follows 
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The new concentration in the immobile region follows directly from (6.13): 
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Similarly as for the chemical nonequilibrium case, equation (6.18) is incorporated directly into F and 
G to obtain following values: 
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The numerical solution for the attachment/detachment approach to nonequilibrium solute transport is 
handled similarly. 
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6.4. Numerical Solution Strategy 
 
6.4.1. Solution Process 
 
 The solution process at each time step proceeds as follows. First, an iterative procedure is 
used to obtain the solution of the Richards' equation (2.1) (see Section 5.3.1). After achieving 
convergence, the solution of the transport equation (6.10) is implemented. This is done by first 
determining the nodal values of the fluid flux from nodal values of the pressure head by applying 
Darcy's law. Nodal values of the water content and the fluid flux at the previous time level are 
already known from the solution at the previous time step. Values for the water content and the fluid 
flux are subsequently used as input to the transport equations (first for heat transport and then for 
solute transport), leading to the system of linear algebraic equations given by (6.10). The structure of 
the final set of equations depends upon the value of the temporal weighing factor, ε.  The explicit 
(ε=0) and fully implicit (ε=1) schemes require that the global matrix [G] and the vector {g} be 
evaluated at only one time level (the previous or current time level). All other schemes require 
evaluation at both time levels. Also, all schemes except for the explicit formulation (ε=0) lead to an 
asymmetric banded matrix [G]. The associated set of algebraic equations is solved using either a 
standard asymmetric matrix equation solver [e.g., Neuman, 1972], or the ORTHOMIN method 
[Mendoza et al., 1991], depending upon the size of final matrix.  By contrast, the explicit scheme 
leads to a diagonal matrix [G], which is much easier to solve (but generally requires smaller time 
steps). 
 Since the heat transport equation is linear, there is no need for an iterative solution process 
for heat flow. The same is true for the transport of solutes undergoing only linear sorption reactions. 
On the other hand, iteration is needed when a nonlinear reaction between the solid and liquid phase 
is considered. The iteration procedure for solute transport is very similar to that for water flow. The 
coefficients in (6.10) are re-evaluated using each iteration, and the new equations are again solved 
using results of the previous iteration. The iterative process continues until a satisfactory degree of 
convergence is obtained, i.e., until at all nodes the absolute change in concentration between two 
successive iterations becomes less than some small value determined by the imposed relative and 
absolute concentration tolerances. 
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6.4.2. Upstream Weighted Formulation 
 
 Upstream weighing is provided as an option in the HYDRUS to minimize some of the 
problems with numerical oscillations when relatively steep concentration fronts are being simulated. 
For this purpose the second (flux) term of equation (6.3) is not weighted by regular linear basis 
functions φn, but instead using the nonlinear functions φn

u [Yeh and Tripathi, 1990] 
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 Figure 6.1. Direction definition for the upstream weighting factors αij

w. 
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where αi
w is a weighing factor associated with the length of the element size opposite to node i, αij

w 
is a weighing factor associated with the line connecting nodes i and j (Figure 6.1) and Li are the local 
coordinates. The weighing factors are evaluated using the equation of Christie et al. [1976]: 
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where u, D and L are the flow velocity, dispersion coefficient and length associated with side i. The 
weighing functions φu ensure that relatively more weight is placed on the flow velocities of nodes 
located at the upstream side of an element. Evaluating the integrals in (6.3) shows that the following 
additional terms must be added to the entries of the global matrix Snm in equation (6.6) in two-
dimensional formulation: 
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and in three-dimensional formulation 
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 The weighing factors are applied only to those element sides that are inclined within 10 
degrees from the flow direction. 
 
 
6.4.3. Implementation of First-Type Boundary Conditions 
 
 Individual equations in the global matrix equation which correspond to nodes at which the 
concentration is prescribed are replaced by new equations: 
 

 0nm m nc cδ =  (6.30) 

 
where cn0 is the prescribed value of the concentration at node n. This is done only when Gaussian 
elimination is used to solve the matrix equation. A similar procedure as for water flow (described in 
Section 5.3.4) is applied when the ORTHOMIN method is used. Because of asymmetry of the global 
matrix [G], no additional manipulations are needed in the resulting system of equations as was the 
case for the water flow solution. 
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 The total material flux, Qn
T, through a boundary at node n consists of the dispersive flux, 

Qn
D, and the convective flux, Qn

A: 
 

 T D A
n n nQ Q Q= +  (6.31) 

 
The dispersive boundary nodal flux is not known explicitly but must be calculated from equation 
(6.4). Hence, the dispersion flux, Qn

D, for node n can be calculated as 
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The convective flux is evaluated as  

 
 A

n n nQ Q c=  (6.33) 

 
where the fluid flux Qn is known from the solution of the water flow equation. 
 
 
6.4.4. Implementation of Third-Type Boundary Conditions 
 
 Equation (3.37) is rewritten as follows 
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When substituted into the last term of (6.3), the boundary integral becomes  
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The first term on the right-hand side of (6.35) represents the convective flux. This term is 
incorporated into the coefficient matrix [S] of (6.4). The last term of (6.35) represents the total 
material flux, which is added to the known vector {f}. 
 At nodes where free outflow of water and its dissolved solutes takes place, the exit 
concentration c0 is equal to the local (nodal) concentration cn. In this case the dispersive flux 
becomes zero and the total material flux through the boundary is evaluated as 
 

 T
n n nQ Q c=  (6.36) 

 The Cauchy boundary condition for volatile solutes is treated in a similar way. Equation 
(3.39) is rewritten as follows 
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Again, when substituted into the last term of (6.3), the boundary integral becomes  
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where ΔL is the length of the boundary associated with node n. The last term of (6.38) representing 
the gas diffusion flux through the stagnant boundary layer at the soil surface is directly added to the 
vector {f} in equation (6.9), whereas the term containing kg and unknown concentration cn is 
incorporated into the coefficient matrix [S]. The other terms on the right-hand side of (6.38) are 
treated in the same way as described above for equation (6.35). 
 
 
6.4.5. Mass Balance Calculations 
 
 The total amount of mass in the entire flow domain, or in a preselected subregion, is given 
by 
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The summation is taken over all elements within the specified region. The equations in this section 
pertain only to the equilibrium or chemical nonequilibrium models; the mass balance equations for 
physical nonequilibrium transport are very similar as those for chemical nonequilibirum. 
 The cumulative amounts M0 and M1 of solute removed from the flow region by zero- and 
first-order reactions, respectively, are calculated as follows 
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whereas the cumulative amount Mr of solute taken up by plant roots is given by 
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where eR represents the elements making up the root zone. 
 Finally, when all boundary material fluxes, decay reactions, and root uptake mass fluxes 
have been computed, the following mass balance should hold for the flow domain as a whole: 
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where Mt and M0 are the amounts of solute in the flow region at times t and zero, respectively, as 
calculated with (6.39), and nΓ represents nodes located along the boundary of the flow domain or at 
internal sinks and/or sources. The difference between the left- and right-hand sides of (6.43) 
represents the absolute error, εa

c, in the solute mass balance. Similarly as for water flow, the 
accuracy of the numerical solution for solute transport is evaluated by using the relative error, εr

c 
[%], in the solute mass balance as follows 
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where M0

e and Mt
e are the amounts of solute in element e at times 0 and t, respectively. Note again 

that HYDRUS does not relate the absolute error to the total amount of mass in the flow region. 
Instead, the program uses as a reference the maximum value of (1) the absolute change in element 
concentrations as summed over all elements, and (2) the sum of the absolute values of all cumulative 
solute fluxes across the flow boundaries including those resulting from sources and sinks in the flow 
domain. 
 The total amount of heat energy in the entire flow domain, or in a preselected subregion, is 
given by 
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where TA is the absolute temperature [K]. The summation is taken over all elements within the 
specified region. 
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6.4.6. Oscillatory Behavior 
 
 Numerical solutions of the transport equation often exhibit oscillatory behavior and/or 
excessive numerical dispersion near relatively sharp concentration fronts. These problems can be 
especially serious for convection-dominated transport characterized by small dispersivities. One way 
to partially circumvent numerical oscillations is to use upstream weighing as discussed in Section 
6.4.2. Undesired oscillations can often be prevented also by selecting an appropriate combination of 
space and time discretizations. Two dimensionless numbers may be used to characterize the space 
and time discretizations. One of these is the grid Peclet number, Pei

e, which defines the predominant 
type of the solute transport (notably the ratio of the convective and dispersive transport terms) in 
relation to coarseness of the finite element grid: 
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ii

q xPe
Dθ
Δ  (6.46) 

 
where Δxi is the characteristic length of a finite element. The Peclet number increases when the 
convective part of the transport equation dominates the dispersive part, i.e., when a relatively steep 
concentration front is present. To achieve acceptable numerical results, the spatial discretization 
must be kept relatively fine to maintain a low Peclet number. Numerical oscillation can be virtually 
eliminated when the local Peclet numbers do not exceed about 5. However, acceptably small 
oscillations may be obtained with local Peclet numbers as high as 10 [Huyakorn and Pinder, 1983]. 
Undesired oscillation for higher Peclet numbers can be effectively eliminated by using upstream 
weighing (see Section 6.4.2). 
 A second dimensionless number which characterizes the relative extent of numerical 
oscillations is the Courant number, Cri

e. The Courant number is associated with the time 
discretization as follows 
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 Three stabilizing options are used in HYDRUS to avoid oscillations in the numerical 
solution of the solute transport equation [Šimůnek and van Genuchten, 1994]. One option is 
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upstream weighing (see Section 6.4.2), which effectively eliminates undesired oscillations at 
relatively high Peclet numbers. A second option for minimizing or eliminating numerical 
oscillations uses the criterion developed by Perrochet and Berod [1993] 

 
 2sPe Cr ω⋅ ≤ =  (6.48) 

 
where ωs is the performance index [-]. This criterion indicates that convection-dominated transport 
problems having large Pe numbers can be safely simulated provided Cr is reduced according to 
(6.48) [Perrochet and Berod, 1993]. When small oscillations in the solution can be tolerated, ωs can 
be increased to about 5 or 10. 
 A third stabilization option implemented in HYDRUS also utilizes criterion (6.48). 
However, instead of decreasing Cr to satisfy equation (6.48), this option introduces artificial 
dispersion to decrease the Peclet number. The amount of additional longitudinal dispersion, 

LD  [L], 

is given by [Perrochet and Berod, 1993] 
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The maximum permitted time step is calculated for all three options, as well as with the additional 
requirement that the Courant number must remain less than or equal to 1. The time step calculated in 
this way is subsequently used as one of the time discretization rules (rule No. B) discussed in section 
5.3.3. 
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 7. PARAMETER OPTIMIZATION 
 
 Parameter optimization is an indirect approach for estimating the unsaturated soil hydraulic 
and/or solute transport parameters from transient flow and/or transport data. Inverse methods are 
typically based upon the minimization of a suitable objective function, which expresses the 
discrepancy between the observed values and the predicted system response. Soil hydraulic 
properties for this purpose are assumed to be described by an analytical model with unknown 
parameter values (see Section 2.3). The system response is represented by a numerical solution of 
the flow equation, augmented with the parameterized hydraulic functions, selected transport 
parameters, and suitable initial and boundary conditions.  Initial estimates of the optimized system 
parameters are then iteratively improved during the minimization process until a desired degree of 
precision is obtained. This methodology was originally applied to one-step and multi-step column 
outflow data generated in the laboratory [see for example Kool et al., 1985; van Dam et al., 1994], 
and laboratory or field transport data during steady-state water flow [van Genuchten, 1981; Toride et 
al., 1995]. HYDRUS implements parameter optimization also for estimating the solute transport and 
reaction parameters from transient water flow and/or solute transport experiments. 
 
 
 7.1. Definition of the Objective Function 
 
 The objective function Φ to be minimized during the parameter estimation process may be 
defined as [Šimůnek et al., 1998]: 
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where the first term on the right-hand side represents deviations between the measured and 
calculated space-time variables (e.g., observed pressure heads, water contents, and/or concentrations 
at different locations and/or time in the flow domain, or the actual or cumulative flux versus time 
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across a boundary of specified type). In this term, mq is the number of different sets of 
measurements, nqj is the number of measurements in a particular measurement set, qj

*(x,ti) represents 
specific measurements at time ti for the jth measurement set at location x(r,z), qj(x,ti ,b) are the 
corresponding model predictions for the vector of optimized parameters b (e.g., θr , θs , α, n, Ks, Dl, 
kg,k, ...), and vj and wi,j are weights associated with a particular measurement set or point, 
respectively. The second term of (7.1) represents differences between independently measured and 
predicted soil hydraulic properties (e.g., retention, θ(h) and/or hydraulic conductivity, K(θ) or K(h) 
data), while the terms mp, npj, pj

*(θi), pj(θi ,b), jv j and , i jw  have similar meanings as for the first term 

but now for the soil hydraulic properties. The last term of (7.1) represents a penalty function for 
deviations between prior knowledge of the soil hydraulic parameters, bj

*, and their final estimates, bj, 
with nb being the number of parameters with prior knowledge and ˆ jv  representing pre-assigned 

weights. Estimates, which make use of prior information (such as those used in the third term of 
(7.1)) are known as Bayesian estimates. We note that the covariance (weighting) matrices, which 
provide information about the measurement accuracy, as well as any possible correlation between 
measurement errors and/or parameters, are assumed to be diagonal in this study. The weighting 
coefficients vj , which minimize differences in weighting between different data types because of 
different absolute values and numbers of data involved, are given by [Clausnitzer and Hopmans, 
1995]: 
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which causes the objective function to become the average weighted squared deviation normalized 
by the measurement variances σj

2. 
 
 
 7.2. Marquardt-Levenberg Optimization Algorithm 
 
 Minimization of the objective function Φ is accomplished by using the Levenberg-
Marquardt nonlinear minimization method (a weighted least-squares approach based on Marquardt's 
maximum neighborhood method) [Marquardt, 1963]. This method combines the Newton and 
steepest descend methods, and generates confidence intervals for the optimized parameters. The 
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method was found to be very effective and has become a standard in nonlinear least-squares fitting 
among soil scientists and hydrologists [van Genuchten, 1981; Kool et al., 1985, 1987]. 
 
 
 7.3. Statistics of the Inverse Solution 
 
 As part of the inverse solution, HYDRUS produces a correlation matrix which specifies 
degree of correlation between the fitted coefficients. The correlation matrix quantifies changes in 
model predictions caused by small changes in the final estimate of a particular parameter, relative to 
similar changes as a result of changes in the other parameters. The correlation matrix reflects the 
nonorthogonality between two parameter values. A value of ±1 suggests a perfect linear correlation 
whereas 0 indicates no correlation at all. The correlation matrix may be used to select which 
parameters, if any, are best kept constant in the parameter estimation process because of high 
correlation. 

An important measure of the goodness of fit is the r2 value for regression of the observed, ŷi, 
versus fitted, yi(b), values: 
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 (7.3) 

 
The r2 value is a measure of the relative magnitude of the total sum of squares associated with the 
fitted equation; a value of 1 indicates a perfect correlation between the fitted and observed values. 
 HYDRUS provides additional statistical information about the fitted parameters such as the 
mean, standard error, T-value, and the lower and upper confidence limits (given in output file 
FIT.OUT). The standard error, s(bj), is estimated from knowledge of the objective function, the 
number of observations, the number of unknown parameters to be fitted, and an inverse matrix 
[Daniel and Wood, 1971]. The T-value is obtained from the mean and standard error using the 
equation 
 



 

 
 
 86

 
( )

j

j

b
T

s b
=  (7.4) 

 

The values for T and s(bj) provide absolute and relative measures of the deviations around the mean. 
HYDRUS also specifies the upper and lower bounds of the 95% confidence level around each fitted 
parameter bj. It is desirable that the real value of the target parameter always be located in a narrow 
interval around the estimated mean as obtained with the optimization program. Large confidence 
limits indicate that the results are not very sensitive to the value of a particular parameter. 
 Finally, because of possible problems related to convergence and parameter uniqueness, we 
recommend to routinely rerun the program with different initial parameter estimates to verify that the 
program indeed converges to the same global minimum in the objective function. This is especially 
important for field data sets, which often exhibit considerable scatter in the measurements, or may 
cover only a narrow range of soil water contents, pressure heads, and/or concentrations. Whereas 
HYDRUS will not accept initial estimates that are out of range, it is ultimately the user's 
responsibility to select meaningful initial estimates. Parameter optimization is implemented only for 
two-dimensional problems. 
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 8. PROBLEM DEFINITION 
  
8.1. Construction of Finite Element Mesh 
 
 The finite element mesh is constructed by dividing the flow region for two-dimensional 
problems into quadrilateral and/or triangular elements or for three-dimensional problems into 
tetrahedral, hexahedral and/or triangular prismatic elements (Fig. 8.1) whose shapes are defined by 
the coordinates of the nodes that form the element corners. The program automatically subdivides 
the quadrilaterals into triangles (or hexahedrals and triangular prisms into tetrahedrals), which are 
then treated as subelements. Two different ways are possible to subdivide the hexahedrals into 
tetrahedrals, whereas six different possibilities exist for subdividing the triangular prisms into 
tetrahedrals (see Fig. 8.1). 
 If two neighboring hexahedral elements are subdivided in the same way (e.g., options 2a or 
2b in Fig. 8.1), the newly formed edges on a common surface will cross each other, a feature which 
is not allowed. Two neighboring hexahedral elements should therefore always use both options 2a 
and 2b as shown in Figure 8.1, so that the newly formed edges on the common surface will coincide. 
Therefore, it is necessary to give not only the corner nodes, which define an element, but also the 
code, which specifies how a particular element is to be subdivided into subelements (this is done 
automatically if the graphical user interface is used). It is necessary to always realize how the 
neighboring elements are going to be subdivided, and to input also the proper code specifying the 
subdivision. Having high flexibility in terms of possible subdivisions into subelements is important, 
especially for unstructured finite element meshes using triangular prisms. 
 Transverse lines [Neuman, 1974] formed by element boundaries must transect the mesh 
along the general direction of its shortest dimension. These transverse lines should be continuous 
and non-intersecting, but need not be straight. The nodes are numbered sequentially from 1 to 
NumNP (total number of nodes) by proceeding along each transverse line in the same direction. 
Elements are numbered in a similar manner. The maximum number of nodes on any transverse line, 
IJ, is used to determine the effective size of the finite element matrix (i.e., its band width). To 
minimize memory and time requirements, IJ should be kept as small as possible. The above rules for 
defining the finite element mesh apply only when Gaussian elimination is used to solve the matrix 
equations. Iterative methods (such as the conjugate gradient and ORTHOMIN methods) are not so 
restrictive since only non-zero entries in the coefficient matrix are stored in memory, and since the 
computational efficiency is less dependent upon the bandwidth of the matrix as compared to direct 
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equation solvers. 
 The finite element dimensions must be adjusted to a particular problem. They should be 
made relatively small in directions where large hydraulic gradients are expected. Region with sharp 
gradients are usually located in the vicinity of the internal sources or sinks, or close to the soil 
surface where highly variable meteorological factors can cause fast changes in pressure head. Hence, 
we recommend normally using relatively small elements at and near the soil surface. The size of 
elements can gradually increase with depth to reflect the generally much slower changes in pressure 
heads at deeper depths. The element dimensions should also depend upon the soil hydraulic 
properties. For example, coarse-textured soils having relatively high n-values and small α-values 
(see Eqs. (2.26) and (2.28)) generally require a finer discretization than fine-textured soils. We also 
recommend using elements having approximately equal sizes to decrease numerical errors. For 
axisymmetric three-dimensional flow systems, the vertical axis must coincide with, or be to the left 
of, the left boundary of the mesh. No special restrictions are necessary to facilitate the soil root zone. 
 
8.2. Coding of Soil Types and Subregions 
 
 Soil Types - An integer code beginning with 1 and ending with NMat (the total number of 
soil materials) is assigned to each soil type in the flow region. The appropriate material code is 
subsequently assigned to each nodal point n of the finite element mesh. Interior material interfaces 
do not coincide with element boundaries. When different material numbers are assigned to the 
corner nodes of a certain element, material properties of this element will be averaged automatically 
by the finite element algorithm. This procedure will somewhat smooth soil interfaces. 
 A set of soil hydraulic parameters and solute transport characteristics must be specified for 
each soil material. Also, the user must define for each element the principal components of the 
conductivity anisotropy tensor, as well as the angle between the local and global coordinate systems. 
 As explained in Section 2.3, one additional way of changing the unsaturated soil hydraulic 
properties in the flow domain is to introduce scaling factors associated with the water content, the 
pressure head and the hydraulic conductivity. The scaling factors are assigned to each nodal point n 
in the flow region. 
 Subregions - Water and solute mass balances are computed separately for each specified 
subregion. The subregions may or may not coincide with the material regions.  Subregions are 
characterized by an integer code which runs from 1 to NLay (the total number of subregions). A 
subregion code is assigned to each element in the flow domain. 
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Figure 8.1. Finite elements and subelements used to discretize the 3-D domain: 1) tetrahedral, 2) 
hexahedral, 3) triangular prism. 
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8.3. Coding of Boundary Conditions 
 
 Flow boundary conditions were programmed in a fairly similar way as done in the UNSAT1 
and UNSAT2 models of Neuman [1972] and Neuman et al. [1974], and in the SWMS_2D [Šimůnek 
et al., 1992] and CHAIN_2D [Šimůnek and van Genuchten, 1994] codes. A boundary code, 
Kode(n), must be assigned to each node, n. If node n is to have a prescribed pressure head during a 
time step (Dirichlet boundary condition), Kode(n) must be set positive during that time step. If the 
volumetric flux of water entering or leaving the system at node n is prescribed during a time step 
(Neumann boundary condition), Kode(n) must be negative or zero. 
 
 Constant Boundary Conditions - The values of constant boundary conditions for a particular 
node, n, are given by the initial values of the pressure head, h(n), in case of Dirichlet boundary 
conditions, or by the initial values of the recharge/discharge flux, Q(n), in case of Neumann 
boundary conditions. Table 8.1 summarizes the use of the variables Kode(n), Q(n) and h(n) for 
various types of nodes. 
 
 
 Table 8.1. Initial settings of Kode(n), Q(n), and h(n) for constant boundary conditions. 
  

 
 Node Type Kode(n) Q(n)     h(n) 

  

 Internal; not sink/source  0  0.0 Initial Value 
 Internal; sink/source  1  0.0 Prescribed 

 (Dirichlet condition) 
 Internal; sink/source  -1  Prescribed  Initial Value 

 (Neumann condition) 

 Impermeable Boundary   0  0.0 Initial Value 

 Specified Head Boundary  1+  0.0 Prescribed 

 Specified Flux Boundary -1*  Prescribed  Initial Value 
 
  
 
     +  5 may also be used 
     * -5 may also be used 
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 Variable Boundary Conditions - Three types of variable boundary conditions can be 
imposed:  
 1. Atmospheric boundary conditions for which Kode(n)=±4,  
 2. Variable pressure head boundary conditions for which Kode(n)=+3, +7, +8, +9, and 
 3. Variable flux boundary conditions for which Kode(n)=-3, -7, -8, and -9. 
 
These conditions can be specified along any part of the boundary. It is not possible to specify more 
than one time-dependent boundary condition for each type. Initial settings of the variables Kode(n), 
Q(n) and h(n) for the time-dependent boundary conditions are given in Table 8.2. 
 
 Table 8.2. Initial settings of Kode(n), Q(n), and h(n) for variable boundary conditions. 
  

 
 Node Type Kode(n)  Q(n)  h(n) 

  

 Atmospheric Boundary -4  0.0 Initial Value 

 Variable Head Boundary +3, +7, +8, +9  0.0 Initial Value 

 Variable Flux Boundary -3, -7, -8, -9  0.0 Initial Value  
 

 

 Atmospheric boundary conditions are implemented when Kode(n)= ±4, in which case time-
dependent input data for the precipitation, Prec, and evaporation, rSoil, rates must be specified in the 
input file ATMOSPH.IN. The potential fluid flux across the soil surface is determined by rAtm= 
rSoil-Prec. The actual surface flux is calculated internally by the program. Two limiting values of 
surface pressure head must also be provided: hCritS which specifies the maximum allowed pressure 
head at the soil surface (usually 0.0), and hCritA which specifies the minimum allowed surface 
pressure head (defined from equilibrium conditions between soil water and atmospheric vapor).  The 
program automatically switches the value of Kode(n) from -4 to +4 if one of these two limiting 
points is reached. Table 8.3 summarizes the use of the variables rAtm, hCritS and hCritA during 
program execution. Width(n) in the table denotes the length of the boundary segment associated with 
node n.   
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 Table 8.3. Definition of the variables Kode(n), Q(n) and h(n) when 
 an atmospheric boundary condition is applied. 

  
 
 Kode(n) Q(n) h(n)   Event 

  

 -4 -Width(n)*rAtm  Unknown rAtm=rSoil-Prec 

 
 +4  Unknown  hCritA Evaporation capacity  
     is exceeded 
 
 +4  Unknown  hCritS Infiltration capacity 
     is exceeded  

 
 
Variable head and flux boundary conditions along a certain part of the boundary are implemented 
when Kode(n)=+3, +7, +8, +9, and -3, -7, -8, and -9, respectively. In that case, the input file 
ATMOSPH.IN must contain the prescribed time-dependent values of the pressure head, hti, or the 
flux, rti, imposed along the boundary. The values of hti or rti are assigned to particular nodes at 
specified times according to rules given in Table 8.4. Variable flux boundary conditions with 
Kode(n)=+3 are treated similarly as atmospheric boundary conditions, i.e., with limited pressure 
head values of hCritA and hCritS. 
 
 Table 8.4. Definition of the variables Kode(n), Q(n) and h(n)  
 when variable head or flux boundary conditions are applied. 

  
 
 Node Type  Kode(n)  Q(n)  h(n) 

  

 Variable Head Boundary  +3, +7, +8, +9  Unknown  hti 

 Variable Flux Boundary  -3, -7, -8, -9  -Width(n)*rti Unknown  
 
 
 Water Uptake by Plant Roots - The program calculates the rate at which plants extract water 
from the soil root zone by evaluating the term D (equation (5.9)) in the finite element formulation. 
The code requires that Kode(n) be set equal to 0 or negative for all nodes in the root zone. Values of 
the potential transpiration rate, rRoot, must be specified at preselected times in the input file 
ATMOSPH.IN. Actual transpiration rates are calculated internally by the program as discussed in 
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Section 2.2. The root uptake parameters are taken from an input file SELECTOR.IN. Values of the 
function Beta(n), which describes the potential water uptake distribution over the root zone 
(equation (2.9)), must be specified for each node in the flow domain (see the description of input 
Block I in Table 10.8 of Section 10). All parts of the flow region where Beta(n)>0 are treated as the 
soil root zone. 
   
 Deep Drainage from the Soil Profile - Vertical drainage, q(h), across the lower boundary of 
the soil profile is sometimes approximated by a flux which depends on the position of groundwater 
level (e.g., Hopmans and Stricker, 1989). If available, such a relationship can be implemented in the 
form of a variable flux boundary condition for which Kode(n)=-6. This boundary condition is 
implemented in HYDRUS by setting the logical variable qGWLF in the input file BOUNDARY.IN 
equal to ".true.". The discharge rate Q(n) assigned to node n is determined by the program as 
Q(n)=-Width(n)*q(h) where h is the local value of the pressure head, and q(h) is given by 
 

 ( ) ( )exp 0qh qhq h A B h GWL L= − −  (8.1) 

 
where Aqh and Bqh are empirical parameters which must be specified in the input file 
BOUNDARY.IN, together with GWL0L which represents the reference position of the groundwater 
level (usually set equal to the z-coordinate of the soil surface).   
 
 Free Drainage - Unit vertical hydraulic gradient boundary conditions can be implemented in 
the form of a variable flux boundary condition for which Kode(n)=-6. This boundary condition is 
implemented in HYDRUS by setting the logical variable FreeD in the input file BOUNDARY.IN 
equal to ".true.". The program determines the discharge rate Q(n) assigned to node n as 
Q(n)=-Width(n)*K(h), where h is the local value of the pressure head, and K(h) is the hydraulic 
conductivity corresponding to this pressure head. 
 
 Seepage Faces - The initial settings of the variables Kode(n), Q(n) and h(n) for nodes along a 
seepage face are summarized in Table 8.5. All potential seepage faces must be identified before 
starting the numerical simulation. This is done by providing a list of nodes along each potential 
seepage face (see input Block J as defined in Table 10.10 of Section 10). 
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Table 8.5. Initial setting of Kode(n), Q(n), and h(n) for seepage 
 faces. 
  
 
 Node Type Kode(n) Q(n) h(n) 

  
 Seepage Face +2 0.0 0.0 

 (initially saturated) 
 Seepage Face -2 0.0 Initial Value 

 (initially unsaturated)  
 
 
 Drains - Table 8.6 summarizes the initial settings of the variables Kode(n), Q(n) and h(n) for 
nodes representing drains. All drains must be identified before starting the numerical simulation. 
This is done by providing a list of nodes representing drains, together with a list of elements around 
each drain whose hydraulic conductivities are to be adjusted according to discussion in Section 5.3.7 
(see also input Block J as defined in Table 10.10 of Section 10). 
 
 

 Table 8.6. Initial setting of Kode(n), Q(n), and h(n) for drains. 
  
 
 Node Type Kode(n) Q(n) h(n) 

  
 Drain +5 0.0 0.0 

 (initially saturated) 
 Drain -5 0.0 Initial Value 

 (initially unsaturated)  
 
 
 Solute and Heat Transport Boundary Conditions - The original version 1.1. of SWMS_2D 
[Šimůnek et al., 1992] assumed a strict relationship between the boundary conditions for water flow 
and solute transport. A first-type boundary condition for water flow forced the boundary condition 
for solute transport also to be of the first-type. Similarly, a second-type boundary condition for water 
flow induced a second- or third-type boundary condition for solute transport depending upon 
direction of the water flux. These strict relationships between the boundary conditions for water flow 
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and solute transport have been abandoned in later versions. Selection of the type of boundary 
condition for the solute transport is now much more independent of the boundary condition 
implemented for water flow. The type of boundary condition to be invoked for solute or heat 
transport is specified by the input variable KodCB or KodTB, respectively. A positive sign of this 
variable means that a first-type boundary condition will be used. When KodCB (KodTB) is negative, 
HYDRUS selects a third-type boundary condition when the calculated water flux is directed into the 
region, or a second-type boundary condition when the water flux is zero or directed out of the 
region. One exception to these rules occurs for atmospheric boundary conditions when Kode(n)=±4 
and Q(n)<0. HYDRUS assumes that solutes can leave the flow region across atmospheric 
boundaries only by gas diffusion. The solute flux in this situation becomes zero, i.e., c0=0 in 
equation (6.34). Cauchy and Neumann boundary conditions are automatically applied to internal 
sinks/sources depending upon the direction of water flow. The dependence or independence of the 
solute and heat boundary conditions on time or the system is still defined through the variable 
Kode(n) as discussed above. 
 Although HYDRUS can implement first-type boundary conditions, we recommend users to 
invoke third-type conditions where possible. This is because third-type conditions, in general, are 
physically more realistic and preserve solute mass in the simulated system (e.g., van Genuchten and 
Parker [1984]; Leij et al. [1991]). 
 For the user's convenience, Table 8.7 summarizes possible values of the different boundary 
codes and their association with specific water flow and solute transport boundary conditions. 
 
8.4. Program Memory Requirements 
 
 One single parameter statement is used at the beginning of the code to define the problem 
dimensions. All major arrays in the program are adjusted automatically according to these 
dimensions. This feature makes it possible to change the dimensions of the problem to be simulated 
without having to recompile all program subroutines. Different problems can be investigated by 
changing the dimensions in the parameter statement at the beginning of the main program, and 
subsequently linking all previously compiled subroutines with the main program when creating an 
executable file. Table 8.8 lists the array dimensions, which must be defined in the parameter 
statement. 
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Table 8.7. Summary of Boundary Coding. 
 

 Boundary Type Water Flow  Solute Transport 

  Kode Input KodCB Input 

Time-
independent 

Impermeable 0 initial h(n), Q(n)=0 NA NA 

 Constant head 1 prescribed h(n), Q(n)=0 ≠0 cBound(i) 

 Constant flux -1 initial h(n), prescribed Q(n) ≠0 (inflow) cBound(i) 

 Source/sink  
(Dirichlet) 

1 prescribed h(n), Q(n)=0 ≠0 (Source) cBound(6) 

 Source/sink 
(Neumann) 

-1 initial h(n), prescribed Q(n) ≠0 (Source)  cBound(6) 

 Seepage Face 
(saturated) 

2 h(n)=0, Q(n)=0 0 - 

 Seepage Face 
(unsaturated) 

-2 initial h(n), Q(n)=0 0 - 

 Drains (saturated) 5 h(n)=0, Q(n)=0 0 - 

 Drains (unsaturated) -5 initial h(n), Q(n)=0 0 - 

Time-
dependent 

Changing head 3, 7, 
8, 9 

h(t), initial h(n), Q(n)=0 ≠0 ch(t) 

 Changing flux -3, -7, 
-8, -9 

q(t), initial h(n), Q(n)=0 ≠0 (inflow) cr(t) 

 Atmospheric 
boundary 

-4 Prec, rSoil,hA,hS, initial h(n), 
Q(n)=0 

0 cPrec(t) 

 Root zone  0 rRoot, initial h(n), Q(n)=0 NA cBound(5) 

 Deep drainage -6 Aqh, Bqh, GWL0L, initial h(n), 
Q(n)=0 

0 - 

 Free drainage -6 initial h(n), Q(n)=0 0 - 

  
 
i = 1, 2, ..., 9 
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 Table 8.8. List of array dimensions in HYDRUS. 
  
 
 Dimension Description 

  
 NumNPD Maximum number of nodes in finite element mesh 

 NumElD Maximum number of elements in finite element mesh 

 MBandD Maximum dimension of the bandwidth of matrix A when 
Gaussian elimination is used.  Maximum number of nodes 
adjacent to a particular node, including itself, when iterative 
matrix solvers are used. 

 NumBPD Maximum number of boundary nodes for which Kode(n)≠0 

 NSeepD Maximum number of seepage faces 

 NumSPD Maximum number of nodes along a seepage face 

 NDrD  Maximum number of drains 

 NElDrD Maximum number of elements surrounding a drain 

 NMatD Maximum number of materials 

 NTabD Maximum number of items in the table of hydraulic properties 
generated by the program for each soil material 

 NumKD Maximum number of available code number values (equals 6 in 
present version) 

 NSD  Maximum number of solutes (equals 6 in present version) 

 NObsD Maximum number of observation nodes for which the pressure 
head, the water content, temperature and concentration are 
printed at each time level 

 MNorth Maximum number of orthogonalizations performed when 
iterative solvers are used 

 
 

 

 
8.5. Matrix Equation Solvers 
 
 Discretization of the governing partial differential equations for water flow (2.1), solute 
transport (3.11) and heat movement (4.1) leads to the system of linear equations 
 

 [ ]{ } { }A  x b=  (8.2) 
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in which matrix [A] is symmetric for water flow and asymmetric for solute and heat  transport. 
 The original version of SWMS_2D [Šimůnek et al., 1992] uses Gaussian elimination to solve 
both systems of linear algebraic equations. The invoked solvers took advantage of the banded nature 
of the coefficient matrices and, in the case of water flow, of the symmetric properties of the matrix. 
Such direct solution methods have several disadvantages as compared to iterative methods. Direct 
methods require a fixed number of operations (depending upon the size of the matrix), which 
increases approximately by the square of the number of nodes [Mendoza et al., 1991]. Iterative 
methods, on the other hand, require a variable number of repeated steps, which increases at a much 
smaller rate (about 1.5) with the size of a problem [Mendoza et al., 1991]. A similar reduction also 
holds for the memory requirement since iterative methods do not require one to store non-zero 
matrix elements. Memory requirements, therefore, increase at a much smaller rate with the size of 
the problem when iterative solvers are used [Mendoza et al., 1991]. Round-off errors also represent 
less of a problem for iterative methods as compared to direct methods. This is because round-off 
errors in iterative methods are self-correcting [Letniowski, 1989]. Finally, for time-dependent 
problems, a reasonable approximation of the solution (i.e., the solution at the previous time step) 
exists for iterative methods, but not for direct methods [Letniowski, 1989]. In general, direct methods 
are more appropriate for relatively small problems, while iterative methods are more suitable for 
larger problems. 
 Many iterative methods have been used in the past for handling large sparse matrix 
equations. These methods include Jacobi, Gauss-Seidel, alternating direction implicit (ADI), block 
successive over-relaxation (BSSOR), successive line over-relaxation (SLOR), and strongly implicit 
procedures (SIP), among others [Letniowski, 1989]. More powerful preconditioned accelerated 
iterative methods, such as the preconditioned conjugate gradient method (PCG) [Behie and Vinsome, 
1982], were introduced more recently. Sudicky and Huyakorn [1991] gave three advantages of the 
PCG procedure as compared to other iterative methods: PCG can be readily modified for finite 
element methods with irregular grids, the method does not require iterative parameters, and PCG 
usually outperforms its iterative counterparts for situations involving relatively stiff matrix 
conditions. 
 HYDRUS implements both direct and iterative methods for solving the system of linear 
algebraic equations given by (8.2). Depending upon the size of matrix [A], we use either direct 
Gaussian elimination or the preconditioned conjugate gradient method [Mendoza et al., 1991] for 
water flow and the ORTHOMIN (preconditioned conjugate gradient squared) procedure [Mendoza 
et al., 1991] for solute transport. Gaussian elimination is used if either the bandwidth of matrix [A] is 
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smaller than 20, or the total number of nodes is smaller than 500. The iterative methods used in 
HYDRUS were adopted from the ORTHOFEM software package of Mendoza et al. [1991]. 
 The preconditioned conjugate gradient and ORTHOMIN methods consist of two essential 
parts: initial preconditioning, and the iterative solution with either conjugate gradient or 
ORTHOMIN acceleration [Mendoza et al., 1991]. Incomplete lower-upper (ILU) preconditioning is 
used in ORTHOFEM when matrix [A] is factorized into lower and upper triangular matrices by 
partial Gaussian elimination. The preconditioned matrix is subsequently repeatedly inverted using 
updated solution estimates to provide a new approximation of the solution. The orthogonalization-
minimization acceleration technique is used to update the solution estimate. This technique insures 
that the search direction for each new solution is orthogonal to the previous approximate solution, 
and that either the norm of the residuals (for conjugate gradient acceleration [Meijerink and van der 
Vorst, 1981]) or the sum of the squares of the residuals (for ORTHOMIN [Behie and Vinsome, 
1982]) is minimized. More details about the two methods is given in the user's guide of 
ORTHOFEM [Mendoza et al., 1991] or in Letniowski [1989]. Letniowski [1989] also gives a 
comprehensive review of accelerated iterative methods, as well as of the preconditional techniques. 
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 9. EXAMPLE PROBLEMS 
 
9.1. Direct Example Problems 
 
 Eight example problems are presented in this section. The first three examples are identical 
to those provided previously with the first version of SWMS_2D [Šimůnek et al., 1992]. The other 
four examples in this section are identical to those provided with CHAIN_2D [Šimůnek and van 
Genuchten, 1994], and are included mainly for mathematical verification purposes, and for 
demonstrating new features of HYDRUS, i.e., non-equilibrium and nonlinear adsorption, sequential 
first-order decay reactions, solute diffusion in the gas phase, and/or heat transport. These examples 
have also been used with versions 1 and 2 of HYDRUS-2D [Šimůnek et al., 1996, 1999]. Finally, 
example 8 is a fully three-dimensional problem. Examples 1 through 6 are solved using both two- 
and three-dimensional solvers. 
 Examples 1 and 2 provide comparisons of the water flow part of HYDRUS code with results 
from both the UNSAT2 code of Neuman [1974] and the SWATRE code of Belmans et al. [1983]. 
Examples 3a and 3b serve to verify the accuracy of the solute transport part of HYDRUS by 
comparing numerical results against those obtained with two- and three-dimensional analytical 
solutions during steady-state groundwater flow. The results obtained with the HYDRUS codes (2D 
and 3D) for these three examples are identical to the results obtained with SWMS_2D. Example 4 
serves to verify the accuracy of HYDRUS by comparing numerical results for a problem with three 
solutes involved in a sequential first-order decay chain against results obtained with an analytical 
solution during one-dimensional steady-state water flow [van Genuchten, 1985]. Example 5 
considers one-dimensional transport of a solute undergoing nonlinear cation adsorption. Numerical 
results are compared with experimental data and previous numerical solutions obtained with the 
MONOC code of Selim et al. [1987] and the HYDRUS code of Kool and van Genuchten [1991]. 
Example 6 serves to verify the accuracy of HYDRUS in describing nonequilibrium adsorption by 
comparing numerical results against experimental data and previous numerical predictions during 
one-dimensional steady-state water flow [van Genuchten, 1981]. Example 7 demonstrates numerical 
results for a field infiltration experiment involving a two-layered axisymmetric three-dimensional 
flow domain. The infiltrating water was assumed to have a higher temperature than the soil, and to 
contain an organic compound (parent pesticide) which in the soil profile degraded into two 
sequential daughter products. Example 8 shows numerical results for contaminant transport in an 
unconfined acquifer subjected to well pumping. 
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9.1.1. Example 1 - Column Infiltration Test 
 
 This example simulates a one-dimensional laboratory infiltration experiment discussed by 
Skaggs et al. [1970]. The example was used later by Davis and Neuman [1983] as a test problem for 
the UNSAT2 code. Hence, the example provides a means of comparing results obtained with the 
HYDRUS and UNSAT2 codes. 
 Figure 9.1 gives graphical representations of the soil column and the finite element mesh 
used for the numerical simulations with two- and three-dimensional solvers. The soil water retention 
and relative hydraulic conductivity functions of the sandy soil are presented in Figure 9.2. The sand 
was assumed to be at an initial pressure head of -150 cm. The soil hydraulic properties were 
assumed to be homogenous and isotropic with a saturated hydraulic conductivity of 0.0433 cm/min. 
The column was subjected to ponded infiltration (a Dirichlet boundary condition) at the soil surface, 
resulting in one-dimensional vertical water flow. The open bottom boundary of the soil column was 
simulated by implementing a no-flow boundary condition during unsaturated flow (h<0), and a 
seepage face with h=0 when the bottom boundary becomes saturated (this last condition was not 
reached during the simulation). The impervious sides of the column were simulated by imposing no-
flow boundary conditions. 
 

            
 
 Figure 9.1. Flow system and finite element mesh for example 1 (2D left, 3D right). 
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 The simulation was carried out for 90 min, which corresponds to the total time duration 
of the experiment. Figure 9.3 shows the calculated instantaneous (q0) and cumulative (I0) 
infiltration rates simulated with HYDRUS. The calculated results agree closely with those 
obtained by Davis and Neuman [1983] using their UNSAT2 code. 
 

 

 
 

Figure 9.2. Retention and relative hydraulic conductivity functions for example 1. The solid circles are 
UNSAT2 input data [Davis and Neuman, 1983]. 
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Figure 9.3. Instantaneous, q0, and cumulative, I0, infiltration rates simulated with the HYDRUS  
 (solid lines) and UNSAT2 (solid circles) codes for example 1. 
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9.1.2. Example 2 - Water Flow in a Field Soil Profile Under Grass 
 
 This example considers one-dimensional water flow in a field profile of the Hupselse Beek 
watershed in the Netherlands. Atmospheric data and observed ground water levels provided the 
required boundary conditions for the numerical model.  Calculations were performed for the period 
of April 1 to September 30 of the relatively dry year 1982. Simulation results obtained with 
HYDRUS will be compared with those generated with the SWATRE computer program [Feddes et 
al., 1978, Belmans et al., 1983]. 
 The soil profile (Fig. 9.4) consisted of two layers: a 40-cm thick A-horizon, and a 
B/C-horizon which extended to a depth of about 300 cm. The depth of the root zone was 30 cm. The 
mean scaled hydraulic functions of the two soil layers in the Hupselse Beek area [Císlerová, 1987; 
Hopmans and Stricker, 1989] are presented in Figure 9.5. 
 

          
 

Figure 9.4. Flow system and finite element mesh for example 2 (2D left, 3D right). 
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 The soil surface boundary conditions involved actual precipitation and potential transpiration 
rates for a grass cover. The surface fluxes were incorporated by using average daily rates distributed 
uniformly over each day. The bottom boundary condition consisted of a prescribed drainage flux - 
groundwater level relationship, q(h), as given by equation(8.1). The groundwater level was initially 
set at 55 cm below the soil surface. The initial moisture profile was taken to be in equilibrium with 
the initial ground water level.  
 Figure 9.6 presents input values of the precipitation and potential transpiration rates. 
Calculated cumulative transpiration and cumulative drainage amounts as obtained with the 
HYDRUS and SWATRE codes are shown in Figure 9.7. The pressure head at the soil surface and 
the arithmetic mean pressure head of the root zone during the simulated season are presented in 
Figure 9.8. Finally, Figure 9.9 shows variations in the calculated groundwater level with time. 



 

 
 
 107

 
 
 
 Figure 9.5. Unsaturated hydraulic properties of the first and second soil layers for example 2. 
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 Figure 9.6. Precipitation and potential transpiration rates for example 2. 
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Figure 9.7. Cumulative values for the actual transpiration and bottom discharge rates for example 2 as 
simulated with HYDRUS (solid line) and SWATRE (solid circles). 
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Figure 9.8. Pressure head at the soil surface and mean pressure head of the root zone for example 2 as 
simulated with HYDRUS (solid lines) and SWATRE (solid circles). 
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Figure 9.9. Location of the groundwater table versus time for example 2 as simulated with the HYDRUS 
(solid line) and SWATRE (solid circles) computer programs. 

 
 
9.1.3a. Example 3A - Two-Dimensional Solute Transport 
 
 This example was used to verify the mathematical accuracy of the solute transport part of 
HYDRUS. Cleary and Ungs [1978] published several analytical solutions for two-dimensional 
dispersion problems. One of these solutions holds for solute transport in a homogeneous, isotropic 
porous medium during steady-state unidirectional groundwater flow. The solute transport equation 
(3.11) for this situation reduces to 
 

 
2 2

2 2T L
c c c cD D - v - Rc = R

z tx z
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+
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 (9.1) 

 
where λ is a first-order degradation constant, DL and DT are the longitudinal and transverse 
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dispersion coefficients, respectively; v is the average pore water velocity (qz/θ) in the flow direction, 
and z and x are the spatial coordinates parallel and perpendicular to the direction of flow. The 
initially solute-free medium is subjected to a solute source, c0, of unit concentration. The source 
covers a length 2a along the inlet boundary at z=0, and is located symmetrically about the coordinate 
x=0. The transport region of interest is the half- plane (z≥0; -∞≤x≤∞). The boundary conditions may 
be written as: 
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The analytical solution of the above transport problem is [Javandel et al., 1984, Leij and Bradford, 
1994] 
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 (9.3) 

 
The input transport parameters for two simulations are listed in Table 9.1. The width of the source 
was assumed to be 100 m. Because of symmetry, calculations were carried out only for the quarter 
plane where x≥0 and z≥0. 
 Figure 9.10 shows the calculated concentration front (taken at a concentration of 0.1) at 
selected times for the first set of transport parameters in Table 9.1. Note the close agreement 
between the analytical and numerical results. Excellent agreement is also obtained for the calculated 
concentration distributions after 365 days at the end of the simulation (Fig. 9.11).  Figures 9.12 and 
9.13 show similar results for the second set of transport parameters listed in Table 9.1. 
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Table 9.1. Input parameters for example 3A. 
  
 
 Parameter Example 3a Example 3b 

  
 v  [m/day] 0.1 1.0 
DT [m2/day] 1.0 0.5 
DL [m2/day] 1.0 1.0 
 λ  [day-1] 0.0 0.01 
 R  [-] 1.0 3.0 

 c0 [-] 1.0 1.0  
 

 

 

 
 
Figure 9.10. Advancement of the concentration front (c=0.1) for example 3a as calculated with HYDRUS 

(dotted lines) and the analytical solution (solid lines). 
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Figure 9.11. Concentration profile at the end of the simulation (t=365 days) for example 3a  

 calculated with HYDRUS (dotted lines) and the analytical solution (solid lines). 
 

    
Figure 9.12. Advancement of the concentration front (c=0.1) for example 3b as calculated with HYDRUS 

(dotted lines) and the analytical solution (solid lines). 
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Figure 9.13. Concentration profile at the end of the simulation (t=365 days) for example 3b as  

 calculated with HYDRUS (dotted lines) and the analytical solution (solid lines). 
 
 
9.1.3b. Example 3B - Three-Dimensional Solute Transport 
 
 This example was used to verify the mathematical accuracy of the solute transport part of 
SWMS_3D. Leij et al. [1991] published several analytical solutions for three-dimensional 
dispersion problems. One of these solutions holds for solute transport in a homogeneous, 
isotropic porous medium during steady-state unidirectional groundwater flow (Figure 9.14). The 
solute transport equation (3.1) for this situation reduces to 
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where λ and μ are a zero- and first-order degradation constants, respectively; DL and DT are the 
longitudinal and transverse dispersion coefficients, respectively; v (= qz /θ) is the average pore 
water velocity in the flow direction, and z is the spatial coordinate parallel to the direction of 
flow, while x and y are the spatial coordinates perpendicular to the flow direction. The initially 
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solute-free medium is subjected to a solute source, c0, of unit concentration. The rectangular 
surface source has dimensions 2a and 2b along the inlet boundary at z=0, and is located 
symmetrically about the coordinates x=0 and y=0 (Figure 9.14). The transport region of interest 
is the half-space (z≥0; -∞≤x≤∞, -∞≤y≤∞). The boundary conditions may be written as: 
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The analytical solution of the above transport problem is [Leij and Bradford, 1994] 
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 (9.6) 

 
where P(t) = 0 if t<t0 and P(t) = t-t0 if t>t0, and where t0 is the duration of solute pulse. The input 
transport parameters for two simulations are listed in Table 9.1. The width of the source was 
assumed to be 100 m in both the x and y directions. Because of symmetry, calculations were 
carried out only for part of the transport domain where x≥0, y≥0 and z≥0. 
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Figure 9.14. Schematic of the transport system for example 3B. 
 
 

 We will not show here the comparison of analytical and numerical results for these three-
dimensional problems, since the obtained figures are fairly similar to Figures 9.11 through 9.14. 
The agreement between the analytical and numerical results is also at the same order as those 
shown in Figures 9.11 through 9.14. 
 
 
9.1.4. Example 4 - One-Dimensional Solute Transport with Nitrification Chain 
 
 This example was used to verify in part the mathematical accuracy of the solute transport 
part of HYDRUS. Numerical results will be compared with results generated with an analytical 
solution published by van Genuchten [1985] for one-dimensional convective-dispersive transport of 
solutes involved in sequential first-order decay reactions. The analytical solution holds for solute 
transport in a homogeneous, isotropic porous medium during steady-state unidirectional 
groundwater flow. Solute transport equations (3.1) and (3.2) for this situation reduce to 
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where μ is a first-order degradation constant, D is the dispersion coefficient, v is the average pore 
water velocity (qx/θ) in the flow direction, x is the spatial coordinate in the direction of flow, and 
where it is assumed that 3 solutes participate in the decay chain. The specific example used here 
applies to the three-species nitrification chain 

 
 + - -

4 2 3        NH NO NO→ →  (9.9) 

 
and is the same as described by van Genuchten [1985], and earlier by Cho [1971]. The boundary 
conditions may be written as: 

 

 

1
1 0,1- (0, )

- 0 2, 3

0 1, 2, 3lim

i
i

i

x

c
D vc v c   t           

x
c

D vc          i   
x

c
                   i   

x→∞

∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠
∂⎛ ⎞+ = =⎜ ⎟∂⎝ ⎠

∂
= =

∂

 (9.10) 

 
 The experiment involves the application of a NH4

+ solution to an initially solute-free 
medium (ci = 0). The input transport parameters for the simulation are listed in Table 9.2. 
 Figure 9.15 shows concentration profiles for all three solutes at time 200 hours, calculated 
both numerically with HYDRUS and analytically with the CHAIN code of van Genuchten [1985]. 
Figure 9.16 shows the concentration profiles at three different times (50, 100, and 200 hours) for 
NH4

+, NO2
-, and NO3

-, respectively. The numerical results in each case duplicated the analytical 
results. 
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 Table 9.2. Input parameters for example 4. 
  
 
 Parameter Value 

  
 v  [cm/hour] 1.0 
 D  [cm2/hour] 0.18 
 μ1 [hour-1] 0.005 
 μ 2 [hour-1] 0.1 
 μ 3 [hour-1] 0.0 
 R1 [-] 2.0 
 R2 [-] 1.0 
 R3 [-] 1.0 
 ci [-] 0.0 

 c0,1 [-] 1.0  
 
 

 

 
 

Figure 9.15. Analytically and numerically calculated concentration profiles for NH4
+, NO2

-, and 
  NO3

- after 200 hours for example 4. 
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Figure 9.16. Analytically and numerically calculated concentration profiles for NH4
+ (top), NO2

- 
(middle), NO3

- (bottom) after 50, 100, and 200 hours for example 4. 
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9.1.5.  Example 5 - One-Dimensional Solute Transport with Nonlinear Cation Adsorption 
 
 The experiment discussed in this example was conducted by Selim et al. [1987], and used 
later for validation of the HYDRUS code [Kool and van Genuchten, 1991]. The soil in this 
experiment was Abist loam. A 10.75-cm long soil column was first saturated with a 10 mmolcL-1 
CaCl2 solution.  The experiment consisted of applying a 14.26 pore volume pulse (t=358.05 hours) 
of 10 mmolcL-1 MgCl2 solution, followed by the original CaCl2 solution. The adsorption isotherm 
was determined with the help of batch experiments [Selim et al., 1987], and fitted with the 
Freundlich equation (3.3) [Kool and van Genuchten, 1991]. The Freundlich isotherm parameters, as 
well as other transport parameters for this problem, are listed in Table 9.3. First- and second-type 
boundary conditions were applied at the top and bottom of the soil column, respectively. 
 The observed Mg breakthrough curve is shown in Figure 9.17, together with simulated 
breakthrough curves obtained with HYDRUS, the MONOC code of Selim et al. [1987] and the 
version 3.1 of the HYDRUS code of Kool and van Genuchten [1991]. The results indicate a 
reasonable prediction of the measured breakthrough curve using HYDRUS, and close 
correspondence between the simulated results obtained with the HYDRUS and MONOC models. 
The HYDRUS results became identical to those generated with HYDRUS-3.1 when a third-type 
boundary condition was invoked at the top of the soil column. 
 
 
 

 Table 9.3. Input parameters for example 5. 
  
 
 Parameter Value 

  
 q  [cm/hour] 0.271 
 D  [cm2/hour] 1.167 
 ρ  [g/cm3] 0.884 
 θ  [-] 0.633 
 c0 [mmolc/L] 10.0 
 ks [cm3/g] 1.687 
 β  [-] 1.615  
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Figure 9.17. Mg breakthrough curves for Abist loam calculated with the MONOD, HYDRUS, and 
HYDRUS codes (data points from Selim et al. [1978]). 

 
 
 The Langmuir adsorption isotherm can also be used to model the exchange of homovalent 
ions. Parameters in the Langmuir adsorption isotherm for homovalent ion exchange may be derived 
as follows. Ion exchange for two ions with valences n and m can be expressed in a generalized form 
as [Sposito, 1981] 
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where Kex is the dimensionless thermodynamic equilibrium constant, and a and a  denote the ion 
activities in the soil solution and on the exchange surfaces [-], respectively: 
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where ci [ML-3] (mmol/l) and si [MM-1] (mmol/kg) are solution and exchangeable concentrations, 
respectively, and γi and ξi are activity coefficients in the soil solution [L3M-1] (l/mmol) and on the 
exchange surfaces [MM-1] (kg/mmol), respectively. Substituting (9.12) into (9.11) gives 
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where Kv denotes the Vanselow selectivity coefficient [-], while K12 will be simply referred to as the 
selectivity coefficient [-]. Assuming that both the total solution concentration, CT  [ML-3] (mmolc/l), 
and the cation exchange capacity, ST [MM-1] (mmolc/kg), are time invariant, i.e., 
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the Langmuir parameters ks and η in (3.3) for the incoming solute become 

 

 

12

12( -1)

T
s

T

T

K S
k

C
K
C

ϑ
η

=

=
 (9.15) 

whereas for the solute initially in the soil column: 
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The parameter υ in (9.15) and (9.16) equals 1 for monovalent ions, and 2 for divalent ions. 
 The selectivity coefficient K12 for example 5 was measured by Selim et al. [1987] 
(K12=0.51). From the total solution concentration (CT=10 mmolc/l) and the known cation exchange 
capacity (ST=62 mmolc/kg), it follows that the parameters in the Langmuir adsorption isotherm for 
the incoming solute (Mg) are ks=3.126 and η=-0.098, while those for the solute initially in the soil 
profile (Ca) the parameters are ks=12.157 and η=0.192. The observed Ca breakthrough curve is 
shown in Figure 9.18, together with the simulated breakthrough curves obtained with the HYDRUS 
and MONOC codes [Selim et al., 1987]. Note the close agreement between the numerical results and 
the experimental data. 
 
 

 
 
 

Figure 9.18. Ca breakthrough curves for Abist loam calculated with the MONOD and HYDRUS codes 
(data points from Selim et al. [1978]) (example 5). 
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9.1.6.  Example 6 - One-Dimensional Solute Transport with Nonequilibrium Adsorption 
 
 This example considers the movement of a boron (H3BO4) pulse through Glendale clay loam 
[van Genuchten, 1981]. The numerical simulation uses solute transport parameters that were fitted to 
the breakthrough curve with the CFITIM parameter estimation model [van Genuchten, 1981] 
assuming a two-site chemical nonequilibrium sorption model analogous to the formulation discussed 
in Section 3, but for steady-state water flow. Input parameters for example 6 are listed in Table 9.4. 
Figure 9.19 compares HYDRUS numerical results with the experimental data, and with a numerical 
simulation assuming physical non-equilibrium and nonlinear adsorption [van Genuchten, 1981]. 
 
 
 

 Table 9.4. Input parameters for example 6. 
  
 
 Parameter Value 

  
 q  [cm/day] 17.12 
 D  [cm2/day] 49.0 
 θ  [-] 0.445 
 ρ  [g/cm3] 1.222 
 c0 [mmolc/L] 20.0 
 ks [cm3/g] 1.14 
 β  [-] 1.0 
 η  [-] 0.0 
 f [-] 0.47 
 ω [1/day] 0.320 
 tp [day] 5.06 
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Figure 9.19. Observed and calculated effluent curves for Boron movement through 
 Glendale clay (data points from van Genuchten [1981]) (example 6). 
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9.1.7. Example 7 - Water and Solute Infiltration Test 
 
 This example corresponds to example 4 in the SWMS_2D and HYDRUS-2D manuals 
[Šimůnek et al., 1992, 1999]. The example concerns the movement of water and a dissolved solute 
from a single-ring infiltrometer into the soil profile consisting of two layers: a 40-cm thick 
A-horizon, and an underlying B/C-horizon. The hydraulic functions of the two soil layers are the 
same as those used in Example 2. The axisymmetric flow system and associated finite element mesh 
for the ponded infiltration experiment are shown in Figure 9.19. The soil profile had an initial 
temperature of 20oC, whereas the infiltrated water had a temperature of 30oC and contained an 
organic (parent) compound (the pesticide aldicarb) which is known to degrade by oxidation into two 
sequential daughter products (sulfone and sulfoxide) [Ou et al., 1988]. Each of the three solutes also 
undergoes hydrolytical first-order decay that leads to products which are not simulated or monitored 
during their subsequent transport (i.e., oxime, sulfone oxime, and sulfoxide oxime) [Ou et al., 1988]. 
All major solutes adsorb onto the solid phase, and volatilization is considered for the first and the 
third solutes. The reaction pathway is schematically given by: 
 
 Product  Product  Product 

 μl,1↑  μl,2↑  μl,3↑ 
 Parent  Daughter  Daughter 

 Pesticide μ'
l,1→ Product 1 μ'

l,2→ Product 2 μ'
l,3→ Product 

 g1    c1    s1  c2    s2  g3    c3    s3 
 kg,1    ks,1  ks,2  kg,3    ks,3 
 
 

The example is used here to illustrate variably-saturated water flow, heat movement, and solute 
transport in a layered and radially symmetric three-dimensional soil profile. 
 Calculations were carried out over a period of 10 days. The pressure head profile obtained in 
example problem 2 at the beginning of June 1982 was taken as the initial condition for the water 
flow equation, similarly as in example 4 of Šimůnek et al. [1992]. The soil profile was assumed to be 
initially free of any solutes. All sides of the flow region were considered to be impervious, except for 
a small portion around the origin at the surface (the ponded surface inside the ring infiltrometer) 
where constant pressure head and concentration flux boundary conditions were imposed, as well as 
the lower right corner where the groundwater level was kept constant. The concentration of the 
infiltrating water was free of any solute except for the first five days of the simulation during which 
time the infiltrating water contained the parent solute of unit concentration. Boundary condition 



 

 
 
 128

(3.40) was used for the non-ponded part of the soil surface, thereby assuming the existence of a 
stagnant boundary layer of thickness d at the soil surface through which volatile solutes moved to 
the atmosphere by gas diffusion only. Water and solute extraction by plant roots was not considered. 
 Tables 9.5, 9.6, and 9.7 list the unsaturated soil hydraulic, heat and solute transport 
parameters, respectively. The solute and heat transport parameters were assumed to be the same for 
the two soil layers. The heat transport parameters b1, b2, b3, Cn, Co, and Cw in Table 9.6 were taken 
from Chung and Horton [1987].  The solute parameters ks, kg, μw, μw’, and Dg in Table 9.7 were 
taken from Wagenet and Hutson [1987]. 
 Figure 9.21 presents the initial and steady-state pressure head profiles. The steady- state 
profile for water flow was reached after approximately 2 or 3 days. Temperature profiles at times 1 
and 10 days are shown in Figure 9.22. The heat front moved relatively slowly into the soil profile in 
comparison with the solute front (shown later) because of the high volumetric heat capacity of the 
relatively wet soil. Figures 9.23, 9.24, and 9.25 show concentration profiles for all three solutes at 
times 2.5, 5, 7.5, and 10 days. After its application in the infiltrating water during the first five days 
of the simulation (Fig. 9.23a, b), the first (parent) solute is transported further by water flow and 
gaseous diffusion, as well as is being degraded by two first-order decay reactions, such that the soil 
profile is practically free of this solute after 10 days (Fig. 9.23c, d). The second solute exists 
exclusively because of first-order degradation of the first solute. Hence, the second solute initially 
corresponds mainly with the first solute, but subsequently moves faster through the soil profile 
because of less sorption. Note that the highest concentrations of the second solute were reached after 
complete application of the first solute (Fig. 9.24c, d). Similar features as for the second solute also 
apply to the third solute. In particular, notice that the soil profile is almost free of this solute after 2.5 
days (Fig. 9.25a), and that the highest concentrations of the third solute (while being much smaller 
than those for the first two solutes) were reached at the end of the simulation (Fig. 9.25d). 
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Table 9.5. Hydraulic input parameters for example 7. 
  
 
 Parameter 1st layer 2nd layer 

  
 θs=θm=θk 0.399 0.339 
 θr=θa 0.000 0.000 
 Ks=Kk [m/day] 0.298 0.454 
 α [1/m] 1.74 1.39 

 n [-] 1.38 1.60  
 

 

 
Table 9.6. Heat transport input parameters for example 7. 

  
 
 Parameter Value 

  
 θn [-] 0.600+ (0.660*) 
 θo [-] 0.001 
 λL [m] 0.005 
 λT [m] 0.001 
 b1 [Wm-1K-1] 0.243 
 b2 [Wm-1K-1] 0.393 
 b3 [Wm-1K-1] 1.534 
 Cn [Jm-3K-1] 1.92*106 
 Co [Jm-3K-1] 2.51*106 
 Cw [Jm-3K-1] 4.18*106 
 Ti [oC] 20 

 T0 [oC] 30  
 
+  for the first layer 
*  for the second layer 
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Table 9.7. Solute transport input parameters for example 7. 
  
 
 Parameter Value 

  
 ρ [kg/m3] 1300 
 Dw [m2/day] 0.00374 
 Dg [m2/day] 0.432 
 DL [m] 0.005 
 DT [m] 0.001 
 ks,1 [m3/kg] 0.0001 
 ks,2 [m3/kg] 0.00005 
 ks,3 [m3/kg] 0.0002 
 kg,1 [-] 1.33*10-7 
 kg,2 [-] 0.0 
 kg,3 [-] 1.33*10-3 
 μw,1 [1/day] 0.2 
 μw,2 [1/day] 0.01 
 μw,3 [1/day] 0.005 
 μ’w,1 [1/day] 0.36 
 μ’w,2 [1/day] 0.024 
 μ’w,3 [1/day] 0.0024 
 c0,1 [-] 1.0 
 c0,2 [-] 0.0 
 c0,3 [-] 0.0 

 d [m] 0.005  
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Figure 9.20. Flow system and finite element mesh for example 7. 
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Figure 9.21. Initial (top) and steady state (bottom) pressure head profiles for example 7. 
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Figure 9.22. Temperature profiles after 1 (top) and 10 days (bottom) for example 7. 
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Figure 9.23. Concentration profiles for the first solute after 2.5, 5, 7.5, and 10 days for 
example 7. 
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Figure 9.24. Concentration profiles for the second solute after 2.5, 5, 7.5, and 10 days for 
example 7. 
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Figure 9.25. Concentration profiles for the third solute after 2.5, 5, 7.5, and 10 days for 
example 7. 
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9.1.8. Example 8 - Contaminant Transport From a Waste Disposal Site 
 
 This test problem concerns contaminant transport from a waste disposal site (or possibly 
a landfill) into a unconfined aquifer containing a pumping well downgradient of the disposal site 
as shown in Figure 9.26. Water was assumed to infiltrate from the disposal site into the 
unsaturated zone under zero-head ponded conditions. The concentration of the contaminant 
leaving the disposal site was taken to be 1.0 during the first 50 days, and zero afterwards. The 
waste disposal site itself had lateral dimensions of 10 x 40 m2. Initially, the water table decreased 
from a height of 28 m above the base of the aquifer at the left-hand side (Figure 9.26) to 26 m on 
the right-hand side of the flow domain. The initial pressure head in the unsaturated zone was 
assumed to be at equilibrium with the initial water table, i.e., no vertical flow occurred. The 
transport experiment started when the water table in the fully penetrated well at x = 170 m (y = 
0) was suddenly lowered to a height of 18 m above the bottom of the unconfined aquifer. We 
assumed that at that same time (t = 0) infiltration started to occur from the disposal site. 
Prescribed hydraulic head conditions h + z = 28 m and h + z = 26 m were imposed along the left-
hand (x = 0) and right-hand (x = 260 m) side boundaries (-50≤y≤50 m). A prescribed hydraulic 
head condition of h + z = 18 m was used to represent the well along a vertical below the water 
table (z≤18) at x = 170 m and y = 0 m, while a seepage face was defined at that location along 
the vertical above the water table (z > 18). No-flow conditions were assumed along all other 
boundaries, including the soil interface. Hydraulic and transport parameters used in the analysis 
are listed in Table 9.8. We selected the retention hydraulic parameters for a coarse-textured soil 
with a relatively high saturated hydraulic conductivity, Ks, in order to test the HYDRUS code for 
a comparatively difficult numerical problem. 
 Because of symmetry about the y axis, only half of the flow region was simulated. The 
solution domain defined by 0≤x≤260, 0≤y≤50, and 0≤z≤38 m was discretized into a rectangular 
grid comprised of 10560 elements and 12144 nodes (Figure 9.27). Nodal spacings were made 
relatively small in regions near the disposal site and near the pumping well where the highest 
head gradients and flow velocities were expected. The variably saturated flow problem was 
solved using HYDRUS assuming an iteration head tolerance of 0.01 m and a water content 
tolerance of 0.0001. 
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Figure 9.26. Geometry and boundary conditions for example 8 simulating three-dimensional flow and 
contaminant transport in a pumped variably-saturated aquifer. 
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Table 9.8. Input parameters for example 8. 
 
              

 Hydraulic Parameters   Transport Parameters 

θs=θm=θk 0.450 ρ [kg/m3] 1400 

θr=θa 0.05 Dd [m2/day] 0.01 

Ks=Kk [m/day] 5.0 DL [m] 1.0 

α [1/m] 4.1 DT [m] 0.25 

n [-] 2.0 k [m3/kg] 0.0 

  μw [1/day] 0.0 

  μs [1/day] 0.0 

  γw [1/day] 0.0 

  γs [1/day] 0.0 

  c0 1.0 

 
 
 Computed water table elevations are plotted in Figure 9.28a and 9.28b along longitudinal 
(y=0) and transverse (x=170 m) planes through the pumping well, respectively. The results show 
a relatively strong direct interaction between the infiltrating water and the saturated zone after 
only a short period of time; water flow reached approximately steady state about 1.5 days after 
the experiment started. The velocity field and streamlines in a longitudinal section through the 
pumping well are presented in Figure 9.29. Note that the length of the seepage face along the 
well was determined to be approximately 5 meters. The calculated well discharge rate for the 
fixed water table (z = 18 m) was calculated to be 39.6 m3/day. A concentration contour plot (c = 
0.1) is presented in Figure 9.30. This figure shows that contaminant transport was strongly 
affected by well pumping. Note that although the contaminant source was located 10 m above 
the initial groundwater table, and 150 m upgradient of the pumping well, the solute reached the 
pumping well after only 200 days of pumping. Figure 9.31 gives a two-dimensional view of 
calculated concentration distributions at several times in a horizontal plane (z = 20 m). 
 Finally, Figure 9.32 presents solute breakthrough curves observed at observation node 1 
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(x = 40 m, z = 32 m), node 2 (x = 150 m, z = 24 m), node 3 (x = 170 m, z = 18 m), and node 4 (x 
= 200 m, z = 20 m). These observation nodes are all on a vertical cross-section (y = 0) as shown 
in Figure 9.26b. Notice that the breakthrough curves differ considerably in shape and especially 
peak concentrations. Although the breakthrough curve at observation node 1 immediately below 
the disposal site was very steep, no numerical oscillations were observed here. This shows that 
HYDRUS is able to solve the present solute transport problem involving sharp concentration 
distributions without generating non-physical oscillations. However, the efficiency of the 
numerical simulation for this example was limited by the need for relatively small time steps so 
as to satisfy the grid Courant criterion (Section 6.3.6). Although water flow had reached 
approximately steady-state within less than 2 days, the time step for the solute transport problem 
was only 0.073 day because of relatively large flow velocities near the well.  

 
 

 
 

Figure 9.27. Finite element mesh for example 8.
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Figure 9.28. Calculated (a) longitudinal (y=0) and (b) transverse (x=170 m) elevations of the  
groundwater table. 
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Figure 9.29. Computed velocity field and streamlines at t = 10 days.



 

 
 
 144

 
 

 
Figure 9.30. Concentration countour plots for (a) c=0.1 in a longitudinal cross-section (y=0), and (b) 

c=0.05 in a transeverse cross-section (x=170 m). 
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Figure 9.31. Concentration distributions in a horizontal plane located at z = 20 m  
 for t = 10, 50, 100, and 200 days.
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Figure 9.32. Breakthrough curves at observation node 1 (x = 40 m, z= 32 m), node 2 (x = 150 m, z = 24 
m), node 3 (x = 170 m, z = 18 m), and node 4 (x = 200 m, z = 20 m). 
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9.2. Inverse Example Problems 
 
 In this section we discuss three methods recently proposed for estimating the soil hydraulic 
properties by numerical inversion of the Richards' equation. One method currently being developed 
involves the use of tension disc permeameter data [Šimůnek and van Genuchten, 1996, 1997] 
(example 9), while a second method uses data collected with a modified cone penetrometer [Gribb, 
1996; Gribb et al., 1998] (example 10). The third method involves the use of a multiple extraction 
device [Inoue et al., 1998] (example 11). All these inverse problems are solved using 2D solver. 
 
9.2.1. Example 9 - Tension Disc Infiltrometer 
 
 Šimůnek and van Genuchten [1997] suggested the use of multiple tension infiltration 
experiments in combination with knowledge of the initial and final water contents for estimating soil 
hydraulic properties. An evaluation of the numerical stability and parameter uniqueness using 
numerically generated data with superimposed stochastic and deterministic errors showed that a 
combination of the multiple cumulative tension infiltration data, a measured final water content, and 
an initial condition expressed in terms of the water content, provided the most promising parameter 
estimation approach for practical applications [Šimůnek and van Genuchten, 1997]. 
 The experiment was used to estimate the soil hydraulic characteristics of a two-layered soil 
system involving a crusted soil in a Sahel region [Šimůnek et al., 1998]. Here we will report only 
results for the sandy subsoil. Data were obtained with a tension disc diameter of 25 cm and with 
supply tensions of 11.5, 9, 6, 3, 1, and 0.1 cm. Figure 9.33 shows measured and optimized 
cumulative infiltration curves and their differences. The small breaks in the cumulative infiltration 
curve (Fig. 9.33) were caused by brief removal of the infiltrometer from the soil surface to resupply 
it with water and to adjust the tension for a new time interval. Very close agreement between the 
measured and optimized cumulative infiltration curves was obtained; the largest deviations were 
generally less than 60 ml, which constituted only about 0.5% of the total infiltration volume. Figure 
9.34 shows a comparison of the parameter estimation results against results obtained using 
Wooding's analysis. Both methods give almost identical unsaturated hydraulic conductivities for 
pressure heads between -2 and -10.25 cm. However, the hydraulic conductivity at the highest 
pressure head interval was overestimated by a factor of two using Wooding's analysis. Šimůnek et al. 
[1998] further compared the numerical inversion results with hydraulic properties estimated from 
available soil textural information using a neural-network-based pedotransfer function approach. 
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Relatively good agreement between the inverse and neural network predictions was obtained. 
 
 

 
 

Figure 9.33. Measured and optimized cumulative infiltration curves for a tension disc infiltrometer 
experiment (example 9). 
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Figure 9.34. Unsaturated hydraulic conductivities at particular pressure heads, calculated using 

 Wooding's analytical solution and the complete function obtained by numerical inversion (example 9). 
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9.2.2. Example 10 - Cone Penetrometer 
 
 While tension infiltrometer experiments provide relatively quick estimates of the hydraulic 
properties, they can be used only at the soil surface. By comparison, a new cone penetrometer 
method currently under development [Gribb, 1996; Gribb et al., 1998; Kodešová et al., 1998] can be 
used at depth. Cone penetrometers were originally used to obtain soil strength characteristics by 
measuring the tip resistance and sleeve friction during penetration at a constant rate. To obtain the 
hydraulic properties, a modified cone penetrometer, instrumented with a porous filter close to the 
penetrometer tip and two tensiometer rings 5 and 9 cm above the filter, is used (Fig. 9.35). The 
device is pushed into a soil to the desired depth, and a constant head is applied to the 5-cm filter. The 
volume of water imbibed into the soil is monitored, as are tensiometer ring readings registering the 
advancement of the wetting front for a short period of time (300-500 s). 
 Gribb [1996] gave a detailed numerical analysis of this experiment, including a study of the 
identifiability of the soil hydraulic parameters. She showed that the inverse solution was least 
sensitive to n and θs, and most sensitive to Ks and α. The method was recently used to estimate the 
hydraulic parameters of a sandy soil in a laboratory aquifer system measuring 5 x 5 x 3 m [Gribb et 
al., 1998; Kodešová et al., 1998; Šimůnek et al., 1999]. 
 Figure 9.36 shows observed flow data, as well as results of the numerical inversion. 
Excellent agreement between measured and optimized values was obtained for the inverse solution 
with four optimized parameters. Gribb et al. [1998] and Kodešová et al. [1998] presented retention 
curves obtained with selected laboratory methods and the parameter estimation technique. The 
optimized curves were close to wetting curves determined in the laboratory. Gribb et al. [1998] 
showed that the estimated saturated hydraulic conductivities were similar to those obtained with 
other test methods, such as the Guelph permeameter, slug tests, and laboratory constant head tests. 
Finally, Šimůnek et al. [1999] further used the redistribution part of the experiment to also estimate 
hysteresis in the soil water retention curve. 
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Figure 9.35. Schematic of the modified cone penetrometer (example 10). 

 
Figure 9.36. Comparison of observed and optimized cumulative infiltration curves and tensiometer 

readings for the modified cone penetrometer test (example 10). 
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9.2.3. Example 11 - Multiple-Step Extraction Experiment 
 
 The tension infiltrometer and cone penetrometer methods provide information about the 
wetting branches of the soil hydraulic properties. By comparison, a multiple step extraction device 
can be used to obtain draining branches. The device consists of a ceramic soil solution sampler (Fig. 
9.37), which is inserted into an initially wet soil profile and subjected to a series of vacuum 
extraction pressures. The cumulative amount of soil solution extracted during an experiment, as well 
as pressure heads at various locations near the extraction device, are monitored during the 
experiment and subsequently used in an objective function for the nonlinear minimization problem. 
Inoue et al. [1998] first evaluated the feasibility of the vacuum extraction technique using 
numerically generated data, and concluded that the method is well suited for loamy-textured soils, 
but not necessarily for sandy soils. They tested the method in the laboratory and in the field. Here we 
briefly discuss one laboratory application. 
 The experiment [Inoue et al., 1998] was carried out on a Columbia fine sandy loam. The 
center of the ceramic ring (with a radius of 3 cm, and a length of 3 cm) was located 6.3 cm below the 
soil surface. The tensiometers were installed at the following positions: T1(r,z)=(4,-6.3 cm), T2=(6,-
6.3), T3=(6,-24). Five vacuum extraction steps were applied: hex=-35 cm for 25 h, hex=-65 cm for 25 
< t < 73 h, hex=-125 cm for 73 < t < 217 h, hex=-240 cm for 217 < t < 339 h, and finally hex=-480 cm 
for 339 < t < 605 h. Experimental data, as well as the final results of the numerical inversion, are 
presented in Figure 9.38. The saturated hydraulic conductivity of the ceramic ring was optimized 
simultaneously with van Genuchten's hydraulic parameters. Agreement between measured and 
calculated values in Figure 9.38 was relatively good. Inoue et al. [1998] compared the optimized soil 
hydraulic functions with independently measured data. 
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Figure 9.37. Layout of laboratory multistep extraction experiment (example 11). 
 

 
Figure 9.38. Comparison of measured (symbols) and optimized (lines) cumulative extraction (a) and 

pressure head (b) values (example 11). 
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 10. INPUT DATA 
 
 The input data for HYDRUS are given in seven separate input files. These input files consist 
of one or more input blocks identified by the letters from A through M. The input files and blocks 
must be arranged as follows: 
 
  SELECTOR.IN 
   A. Basic Information 
   B. Material Information 
   C. Time Information 
   D. Solute Transport Information 
   E. Heat Transport Information 
   F. Root Water Uptake Information 
 
  MESHTRIA.TXT 
   G. Finite Element Mesh Information 
 
  DOMAIN.DAT 
   H. Nodal Information  
   I. Element Information 
 
  BOUNDARY.IN 
   J. Boundary Information 
 
  ATMOSPH.IN 
   K. Atmospheric Information 
 
  DIMENSIO.IN 
   L. Dimension Information 
 
  FIT.IN 
   M. Inverse Solution Information 

 
 The various input blocks are described in detail below. Tables 10.1 through 10.13 describe 
the data required for each input block. All data are read in using list-directed formatting (free 
format). Comment lines are provided at the beginning of, and within, each input block to facilitate, 
among other things, proper identification of the function of the block and the input variables. The 
comment lines are ignored during program execution; hence, they may be left blank but should not 
be omitted. All input files must be placed into one subdirectory. Output files are printed into the 
same subdirectory. An additional file Level_01.dir, which specifies the path to the input and output 
file subdirectory must be given in the same directory as the executable HYDRUS codes if numerical 
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solvers are to be run outside of the GUI. The program assumes that all input data are specified in a 
consistent set of units for mass M, length L, and time T. The values of temperature should be 
specified in degrees Celsius. 
 Most of the information in Tables 10.1 through 10.13 should be self-explanatory. Several 
input files can be alternatively entered using binary files, e.g. the DOMAIN.DAT file can be 
replaced with the binary DOMAIN.IN file, and the MESHTRIA.TXT file can be replaced with the 
MESHTRIA.000 (or MESHGEN2.PMG) binary file. Binary files are utilized by default when the 
HYDRUS user interface is used. 
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 Table 10.1. Block A - Basic information. 
  
 
Record  Type  Variable   Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Selector.in file; set equal to 3 for current version. 

2,3  -   - Comment lines.  

4 Char  Hed Heading. 

5  -  - Comment line. 

6 Char  LUnit Length unit (e.g., 'cm'). 

7 Char  TUnit Time unit (e.g., 'min'). 

8 Char MUnit Mass unit for concentration (e.g., 'g', 'mol', '-'). 

9  -  - Comment line. 

10 Integer Kat Type of flow system to be analyzed: 
    0 for a horizontal (areal) system 
    1 for axisymmetric flow 
    2 for vertical flow in a cross-section 

   Records 9 and 10 are provided only for two-dimensional problems. 

11  -  - Comment line. 

12 Integer  MaxIt   Maximum number of iterations allowed during any time step (usually 10). 

12 Real TolTh Absolute water content tolerance for nodes in the unsaturated part of the flow 
region [-] (its recommended value is 0.001). TolTh represents the maximum 
desired absolute change in the value of the water content, θ, between two 
successive iterations during a particular time step. 

12 Real TolH Absolute pressure head tolerance for nodes in the saturated part of the flow region 
[L] (its recommended value is 1 cm). TolH represents the maximum desired 
absolute change in the value of the pressure head, h, between two successive 
iterations during a particular time step. 

12 Logical lInitW Set this logical variable equal to .true. when the initial condition is specified in 
terms of the pressure head. 

   Set this logical variable equal to .false. when the initial condition is specified in 
terms of the water content. 

13  -  - Comment line. 

14 Logical lWat Set this logical variable equal to .true. when transient water flow is considered. 
   Set this logical variable equal to .false. when steady-state water flow is to be 

calculated. 

14 Logical lChem Set this logical variable equal to .true. if solute transport is to be considered. 

14 Logical SinkF Set this variable equal to .true. if water extraction from the root zone is imposed. 
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 Table 10.1. (continued) 
  
 
Record Type Variable Description 

  
14 Logical ShortF .true. if information is to be printed only at preselected times, but not at each 

 time step (T-level information, see Section 11.1),  
   .false. if information is to be printed at each time step or at each n-time steps. 

14 Logical lPrint Set this logical variable equal to .true. if information about the pressure heads, 
water contents, temperatures, and concentrations in observation nodes, and the 
water and solute fluxes is to be printed at a constant time interval tPrintInterval. 

14 Logical lScreen Set this logical variable equal to .true. if information is to be printed on the screen 
during code execution. 

14 Logical AtmInf .true. if atmospheric boundary conditions are supplied via the input file 
ATMOSPH.IN, 

   .false. if the file ATMOSPH.IN is not provided (i.e., in case of time independent 
boundary conditions). 

14 Logical lTemp Set this logical variable equal to .true. if heat transport is to be considered. 

14 Logical lWDep .true. if hydraulic properties are to be considered as temperature dependent. 
   .false. otherwise (see Section 2.5). 

14 Logical lEquil .true. if equilibrium solute transport is considered. 
   .false. if nonequilibrium solute transport is considered for at least one solute 

species. 

14 Logical lExter Set this logical variable equal to .true. if an external mesh generator is to be used 
to generate the finite element mesh (i.e., when using MESHGEN-2D). 

   Set this logical variable equal to .false. if an internal mesh generator for simple  
quadrilateral domains is to be used to generate the finite element mesh. 

14 Logical lInv Set this logical variable equal to .true. if the soil hydraulic or solute transport 
parameters are to be estimated from measured data (available only for 2D 
applications). 

   Set this logical variable equal to .false. if only the direct solution for a particular 
problem is to be carried out. 

15  -  - Comment line. 

16 Logical lEnter Set this logical variable equal to .true. if the Enter key is to be pressed at the 
end of simulation. 

16 Logical lDummy Logical dummy variable (repeat 7 times). 

17  -  - Comment line. 

17 Integer nPrintSteps Information to the screen and output files is not printed at each time step, but 
after each nPrintSteps. 

17 Real tPrintInterval A constant time interval after which information about the pressure heads, 
water contents, temperatures, and concentrations in observation nodes, and the 
water and solute fluxes is to be printed. 
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 Table 10.1. (continued) 
  
 
Record Type Variable Description 

  
17 Logical lEnter Set this logical variable equal to .true. if the Enter key is to be pressed at the 

end of simulation. 
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 Table 10.2. Block B - Material information. 
  
 
Record  Type  Variable Description 

  
1,2  -  - Comment lines. 

3 Integer NMat Number of soil materials.  Materials are identified by the material number, 
MatNum, specified in Block H. 

3 Integer NLay Number of subregions for which separate water balances are being computed.  
Subregions are identified by the subregion number, LayNum, specified in Block I. 

3 Real ha Absolute value of the upper limit [L] of the pressure head interval below which a 
table of hydraulic properties will be generated internally for each material (ha must 
be greater than 0.0; e.g. 0.001 cm) (see Section 5.3.11). 

3 Real hb Absolute value of the lower limit [L] of the pressure head interval for which a 
table of hydraulic properties will be generated internally for each material (e.g. 
1000 m). One may assign to hb the highest (absolute) expected pressure head to be 
expected during a simulation. If the absolute value of the pressure head during 
program execution lies outside of the interval [ha ,hb], then appropriate values for 
the hydraulic properties are computed directly from the hydraulic functions (i.e., 
without interpolation in the table). Zero values for both ha and hb should be 
specified when interpolation tables are not to be used. 

3 Integer NAniz Number of anisotropy tensors used in the transport domain (minimum number is 
1). This value needs to be provided only for three-dimensional applications. 

4  -  - Comment line. 

5 Integer iModel Soil hydraulic properties model: 
   = 0; van Genuchten's [1980] model with six parameters. 
   = 1; modified van Genuchten's model with ten parameters, Vogel and Císlerová 

[1988]. 
   = 2; Brooks and Corey's [1964] model with six parameters. 
   = 3; van Genuchten's [1980] model with air-entry value of -2 cm and with six 

parameters. 
   = 4; Kosugi’s [1996] model with six parameters. 
   = 5; dual porosity model of Durner [1994] with nine parameters. 
   = 6; dual-porosity system with transfer proportional to the effective saturation (9 

parameters) (see Sections 2.1.2 and 2.8). 
   = 7; dual-porosity system with transfer proportional to the pressure head (11 

parameters) (see Sections 2.1.2 and 2.8). 

5 Integer iHyst Hysteresis in the soil hydraulic properties: 
   = 0; No hysteresis 
   = 1; Hysteresis in the retention curve only 
   = 2; Hysteresis in both the retention and hydraulic conductivity functions 
   = 3; Hysteresis using Bob Lenhard’s model [Lenhard et al., 1991; Lenhard and 

Parker, 1992].  

6  -  - Comment line. 
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 Table 10.2. (continued) 
  
 
Record Type Variable Description 
  
 
7 Integer iKappa = -1 if the initial condition is to be calculated from the main drying branch. 
   =  1 if the initial condition is to be calculated from the main wetting branch. 

   Records 6 and 7 are provided only when iHyst > 0. 

8  -  -  Comment line. 

9 Real Par(1,M) Parameter θr for material M [-]. 
9 Real Par(2,M) Parameter θs for material M [-]. 
9 Real Par(3,M) Parameter α for material M [L-1]. 
9 Real Par(4,M) Parameter n for material M [-]. 
9 Real Par(5,M) Parameter Ks for material M [LT-1]. 
9 Real Par(6,M) Parameter l for material M [-]. 

   The following four parameters are specified only when iModel=1. 
9 Real Par(7,M) Parameter θm for material M [-]. 
9 Real Par(8,M) Parameter θa for material M [-]. 
9 Real Par(9,M) Parameter θk for material M [-]. 
9 Real Par(10,M) Parameter Kk for material M [LT-1]. 

   The following four parameters are specified only when iModel=0 and iHyst>1. 
9 Real Par(7,M) Parameter θm for material M [-]. 
9 Real Par(8,M) Parameter θs

w for material M [-]. 
9 Real Par(9,M) Parameter αw for material M [L-1]. 
9 Real Par(10,M) Parameter Ks

w for material M [LT-1]. 

   The following three parameters are specified only when iModel=5 [Durner, 
1994]. 

9 Real Par(7,M) Parameter w for material M [-]. The weighting factor for the sub-curve for the 
second overlapping subregion. 

9 Real Par(8,M) Parameter α for material M [L-1] for the second overlapping subregion. 
9 Real Par(9,M) Parameter n for material M [-] for the second overlapping subregion. 

   The following four parameters are specified only when iModel=6 (dual-porosity 
system with transfer proportional to the water content gradient). 

9 Real Par(7,M) Parameter θr
im for the immobile region of material M [-]. 

9 Real Par(8,M) Parameter θs
im for the immobile region of material M [-]. 

9 Real Par(9,M) Parameter ω (mass transfer coefficient in (2.60)) for material M [-]. 

   The following four parameters are specified only when iModel=7 (dual-porosity 
system with transfer proportional to the pressure head gradient). 

9 Real Par(7,M) Parameter θr
im for the immobile region of material M [-]. 

9 Real Par(8,M) Parameter θs
im for the immobile region of material M [-]. 

9 Real Par(9,M) Parameter αim for the immobile region of material M [-]. 
9 Real Par(10,M) Parameter nim for the immobile region of material M [-]. 
9 Real Par(11,M) Parameter Ka (mass transfer coefficient in (2.64)) for material M [-]. 
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 Table 10.2. (continued) 
  
 
Record Type Variable Description 
  
 
   Record 9 information is provided for each material M (from 1 to NMat). 

   If lWDep=.true. (Block A) then the soil hydraulic parameters Par(i,M) must be 
specified at reference temperature Tref=20oC. 

10  -  -  Comment line. 

11 Real c11(i) First principal component, K1
A, of the first dimensionless tensor KA which 

describes the local anisotropy of the hydraulic conductivity. 
11 Real c22(i) Second principal component, K2

A. 
11 Real c33(i) Third principal component, K3

A. 
11 Real a11(i) Cosines of the angle between K1

A and the x-coordinate axis. 
11 Real a22(i) Cosines of the angle between K2

A and the y-coordinate axis. 
11 Real a33(i) Cosines of the angle between K3

A and the z-coordinate axis. 
11 Real a12(i) Cosines of the angle between K1

A and the y-coordinate axis. 
11 Real a13(i) Cosines of the angle between K1

A and the z-coordinate axis. 
11 Real a23(i) Cosines of the angle between K2

A and the z-coordinate axis. 

   Record 11 information is provided for each anisotropy tensor (i from 1 to 
NAniz). 

   Records 10 and 11 are provided only for three-dimensional problems. 
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 Table 10.3. Block C - Time information. 
  
 
Record  Type  Variable   Description 

  
1,2  -  - Comment lines. 

3 Real dt Initial time increment, Δt [T].  Initial time step should be estimated in 
dependence on the problem being solved. For problems with high pressure 
gradients (e.g. infiltration into an initially dry soil), Δt should be relatively small. 

3 Real dtMin Minimum permitted time increment, Δtmin [T]. 

3 Real dtMax Maximum permitted time increment, Δtmax [T]. 

3 Real dMul If the number of required iterations at a particular time step is less than or equal 
to ItMin, then Δt for the next time step is multiplied by a dimensionless number 
dMul ≥1.0 (its value is recommended not to exceed 1.3). 

3 Real dMul2 If the number of required iterations at a particular time step is greater than or 
equal to ItMax, then Δt for the next time step is multiplied by dMul2≤1.0 (e.g. 
0.33). 

3 Integer ItMin If the number of required iterations at a particular time step is less than or equal 
to ItMin, then Δt for the next time step is multiplied by a dimensionless number 
dMul≥ 1.0 (its value is recommended not to exceed 1.3). 

3 Integer ItMax If the number of required iterations at a particular time step is greater than or 
equal to ItMax, then Δt for the next time step is multiplied by dMul2 ≤1.0 (e.g. 
0.33). 

3 Integer MPL Number of specified print-times at which detailed information about the pressure 
head, water content, flux, temperature, concentrations, and the water and solute 
balances will be printed. 

4  -  - Comment line. 

5 Real tInit Initial time of the simulation [T]. 

5 Real tMax Final time of the simulation [T]. 

6  -  - Comment line. 

7 Real TPrint(1) First specified print-time [T]. 
7 Real TPrint(2) Second specified print-time [T]. 
.  .  .                   . 
.  .  .                   . 
7 Real TPrint(MPL) Last specified print-time [T]. (Maximum six values on one line.) 
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Table 10.4. Block D - Solute transport information.+ 
  
 
Record Type Variable Description 

  
1,2  -  - Comment lines. 

3 Real Epsi Temporal weighing coefficient. 
      =0.0 for an explicit scheme. 
      =0.5 for a Crank-Nicholson implicit scheme. 
      =1.0 for a fully implicit scheme. 

3 Logical lUpW .true. if upstream weighing formulation is to be used. 
   .false. if the original Galerkin formulation is to be used. 

3 Logical lArtD .true. if artificial dispersion is to be added in order to fulfill the stability 
criterion PeCr (see Section 6.4.6). 

   .false. otherwise. 

3 Logical lTDep .true. if at least one transport or reaction coefficient (ChPar) is temperature 
dependent. 

   .false. otherwise. 
   If lTDep=.true., then all values of ChPar(i,M) should be specified at a 

reference temperature Tr=20oC. 

3 Real cTolA Absolute concentration tolerance [ML-3], the value is dependent on the units 
used (set equal to zero if nonlinear adsorption is not considered). 

3 Real cTolR Relative concentration tolerance [-] (set equal to zero if nonlinear adsorption is 
not considered). 

3 Integer MaxItC Maximum number of iterations allowed during any time step for solute 
transport - usually 10 (set equal to zero if nonlinear adsorption is not 
considered). 

3 Real PeCr Stability criteria (see Section 6.4.6). Set equal to zero when lUpW is equal to 
.true.. 

3 Integer NS Number of solutes in a chain reaction. 

3 Logical lTort .true. if the tortuosity factor [Millington and Quirk, 1961] is to be used. 
   .false. if the tortuosity factor is assumed to be equal to one. 

3 Integer lBacter Set equal to .true. if attachment/detachment approach is to be used to 
calculate nonequilibrium transport of viruses, colloids, or bacteria. Set equal 
to .false. if original formulations, i.e., physical nonequilibrium or two-site 
sorption is to be used to describe nonequilibrium solute transport. 

3 Logical lFiltr Set this logical variable equal to .true. if the attachment coefficient is to be 
evaluated using the filtration theory (eq. (3.28)). 

3 Integer nChPar Number of solute transport parameters specific for each solute. 

4  -  - Comment line. 

5 Real ChPar(1,M) Bulk density of material M, ρ [ML-3]. 
5 Real ChPar(2,M) Longitudinal dispersivity for material type M, DL [L]. 
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 Table 10.4. (continued) 
  
 
Record Type Variable Description 

  
5 Real ChPar(3,M) Transverse dispersivity for material type M, DT [L]. 
5 Real ChPar(4,M) Dimensionless fraction of the sorption sites classified as type-1, i.e., sites with 

instantaneous sorption, when the chemical nonequilibrium option is 
considered. Set equal to 1 if equilibrium transport is to be considered. 
Dimensionless fraction of the sorption sites in contact with mobile water when 
the physical nonequilibrium option is considered. Set equal to 1 if all 
sorption sites are in contact with mobile water. 

5 Real ChPar(5,M) Immobile water content. Set equal to 0 when the physical nonequilibrium 
option is not considered. 

   Record 5 information is provided for each material M (from 1 to NMat). 

6  -  - Comment line. 

7 Real ChPar(6,M) Ionic or molecular diffusion coefficient in free water, Dw [L2T-1]. 
7 Real ChPar(7,M) Ionic or molecular diffusion coefficient in gas phase, Dg [L2T-1]. 

8  -  - Comment line. 

9 Real ChPar(8,M) Adsorption isotherm coefficient, ks, for material type M [L3M-1]. Set equal to 
zero if no adsorption is to be considered. 

9 Real ChPar(9,M) Adsorption isotherm coefficient, η, for material type M [L3M-1]. Set equal to 
zero if Langmuir adsorption isotherm is not to be considered. 

9 Real ChPar(10,M) Adsorption isotherm coefficient, β, for material type M [-]. Set equal to one if 
Freundlich adsorption isotherm is not to be considered. 

9 Real ChPar(11,M) Equilibrium distribution constant between liquid and gas phases, kg, material 
type M [-]. 

9 Real ChPar(12,M) First-order rate constant for dissolved phase, μw, material type M [T-1]. 
9 Real ChPar(13,M) First-order rate constant for solid phase, μs, material type M [T-1]. 
9 Real ChPar(14,M) First-order rate constant for gas phase, μg, material type M [T-1]. 
9 Real ChPar(15,M) Rate constant, μw’, representing a first-order decay for the first solute and zero-

order production for the second solute in the dissolved phase, material type M 
[T-1]. 

9 Real ChPar(16,M) Same as above for the solid phase, μs’, material type M [T-1]. 
9 Real ChPar(17,M) Same as above for the gas phase, μg’, material type M [T-1]. 
9 Real ChPar(18,M) Zero-order rate constant for dissolved phase, γw, material type M [ML-3T-1]. 
9 Real ChPar(19,M) Zero-order rate constant for solid phase, γs, material type M [T-1]. 
9 Real ChPar(20,M) Zero-order rate constant for gas phase, γg, material type M [ML-3T-1]. 
9 Real ChPar(21,M) First-order rate coefficient for nonequilibrium adsorption, or the mass transfer 

coefficient for solute exchange between mobile and immobile liquid regions, 
ω, material type M [T-1]. 

   Parameters ChPar(14,M) through ChPar(21,M) are reinterpreted when the 
variable iBacter=1. 

9 Integer ChPar(14,M) Type of blocking, iPsi, applied in (3.23) on the second sorption sites. 
= 0: No blocking. 

   = 1: Langmuirian dynamics, (3.24). 
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 Table 10.4. (continued) 
  
 
Record Type Variable Description 

  
   = 2: Ripening, (3.25). 
   = 3: random sequential adsorption model, (3.26). 
   = 4: depth dependent blocking coefficient, (3.27). 
9 Integer ChPar(15,M) ditto, for the first sorption sites. 
9 Real ChPar(16,M) Parameter in the blocking function for the second sorption sites (smax for 

(3.24), (3.25) and (3.26), β in (3.27)).   
9 Real ChPar(17,M) The first-order deposition (attachment) coefficient, ka [T-1], for the second 

sorption sites. 
9 Real ChPar(18,M) The first-order entrainment (detachment) coefficient, kd [T-1], for the second 

sorption sites. 
9 Real ChPar(19,M) Parameter in the blocking function for the first sorption sites. 
9 Real ChPar(20,M) The first-order deposition (attachment) coefficient, ka [T-1], for the first 

sorption sites. 
9 Real ChPar(21,M) The first-order entrainment (detachment) coefficient, kd [T-1], for the first 

sorption sites. 

   Parameters ChPar(14,M) through ChPar(21,M) are further reinterpreted 
when the variable iBacter=1 and lFilter=.true.. 

9 Integer ChPar(14,M) Diameter of the sand grains, dc [L]. 
9 Integer ChPar(15,M) Diameter of the particle, dp (e.g., virus, bacteria) (= 0.95 μm = 0.95e-6 m) 

[L]. 
9 Real ChPar(16,M) Parameter smax in the blocking function for the second sorption sites (3.24).   
9 Real ChPar(17,M) Sticking efficiency, α [-], for the second sorption sites. 
9 Real ChPar(18,M) The first-order entrainment (detachment) coefficient, kd [T-1], for the second 

sorption sites. 
9 Real ChPar(19,M) Parameter smax in the blocking function for the first sorption sites (3.24). 
9 Real ChPar(20,M) Sticking efficiency, α [-], for the first sorption sites. 
9 Real ChPar(21,M) The first-order entrainment (detachment) coefficient, kd [T-1], for the first 

sorption sites. 

   Record 9 information is provided for each material M (from 1 to NMat). 

   Record 6 through 9 information are provided for each solute (from 1 to NS). 

10,11  -  - Comment lines. 

12 Real TDep(6) Activation energy for parameter ChPar(6,M) [ML2T-2M-1] (See Section 3.4).  
This parameter should be specified in J mol-1. Set equal to 0 if ChPar(6,M) is 
temperature independent. 

12 Real TDep(7) Same for parameter ChPar(7,M) [ML2T-2M-1]. 

13  -  - Comment line. 

14 Real TDep(8) Same for parameter ChPar(8,M) [ML2T-2M-1]. 
.  .  .  . 
.  .  .  . 
14 Real TDep(21) Same for parameter ChPar(21,M) [ML2T-2M-1]. 
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 Table 10.4. (continued) 
  
 
Record Type Variable Description 

  
   Records 11 through 14 information is provided only when the logical variable 

lTDep of record 3 is set equal to .true.. 

15  -  - Comment line. 

16 Real cBound(1,1) Value of the concentration for the first time-independent BC [ML-3]. Set equal 
to zero if no KodCB(n)=±1 is specified. 

16 Real cBound(1,2) Value of the concentration for the second time-independent BC [ML-3]. Set 
equal to zero if no KodCB(n)= ±2 is specified. 

.  .  .    . 

.  .  .    . 
16 Real cBound(1,5) Value of the concentration for the fifth time-independent BC [ML-3]. If water 

uptake is specified, then cBound(1,5) is automatically used for the 
concentration of water removed from the flow region by root water uptake 
[ML-3]. Set equal to zero if no KodCB(n)=±5 and no root solute uptake is 
specified. 

16 Real cBound(1,6) Value of the concentration for the sixth time-independent BC [ML-3]. If 
internal sources are specified, then cBound(1,6) is automatically used for the 
concentration of water injected into the flow region through internal sources 
[ML-3]. Set equal to zero if no KodCB(n)=±6 and no internal sources are 
specified. 

16 Real cBound(1,7) Concentration of the incoming fluid in equation (3.39) [ML-3]. Set equal to 
zero if no KodCB(n)=-7 is specified. 

16 Real cBound(1,8) Concentration above the stagnant boundary layer, gatm (see equation (3.39)) 
[ML-3]. Set equal to zero if no KodCB(n)=-7 is specified. 

16 Real cBound(1,9) Thickness of the stagnant boundary layer, d [L] (see equation (3.39)). Set 
equal to zero if no KodCB(n)=-7 is specified. 

 
   Record 16 information is provided for each solute (from 1 to NS). 

17  -  - Comment line. 

18 Real tPulse Time duration of the concentration pulse [T]. 
 
 
+Block D is not needed when the logical variable lChem in Block A is set equal to .false. . 
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 Table 10.5. Block E - Heat transport information.+ 
  
 
Record Type Symbol Description 

  
1,2  -  - Comment lines. 

3 Real TPar(1,M) Volumetric solid phase fraction of material M, θn [-]. 
3 Real TPar(2,M) Volumetric organic matter fraction of material M, θo [-]. 
3 Real TPar(3,M) Longitudinal thermal dispersivity of material M, λL [L]. 
3 Real TPar(4,M) Transverse thermal dispersivity of material M, λT [L]. 
3 Real TPar(5,M) Coefficient b1 in the thermal conductivity function [MLT-3K-1] (e.g.Wm-1K-1) 

(see equation (4.5)). 
3 Real TPar(6,M) Coefficient b2 in the thermal conductivity function [MLT-3K-1] (e.g.Wm-1K-1) 

(see equation (4.5)). 
3 Real TPar(7,M) Coefficient b3 in the thermal conductivity function [MLT-3K-1] (e.g.Wm-1K-1) 

(see equation (4.5)). 
3 Real TPar(8,M) Volumetric heat capacity of solid phase of material M, Cn [ML-1T-2K-1] (e.g. 

Jm-3K-1). 
3 Real TPar(9,M) Volumetric heat capacity of organic matter of material M, Co [ML-1T-2K-1] (e.g. 

Jm-3K-1). 
3 Real TPar(10,M) Volumetric heat capacity of liquid phase of material M, Cw [ML-1T-2K-1] (e.g. 

Jm-3K-1). 

   Record 3 is required for each soil material M (from 1 to NMat). 

4  -  - Comment line. 

5 Real TBound(1) Value of the first time-independent thermal boundary condition [0C].  Set 
equal to zero if no KodTB(n)=±1 is specified. 

5 Integer TBound(2) Value of the second time-independent thermal boundary condition [0C]. Set 
equal to zero if no KodTB(n)=±2 is specified. 

.  .  .   . 

.  .  .   . 
5 Integer TBound(6) Value of the sixth time-independent thermal boundary condition [0C]. Set 

equal to zero if no KodTB(n)=±6 is specified. If internal sources are specified, 
then TBound(6) is automatically used for the temperature of water injected into 
the flow region through internal source. 

6  -  - Comment line. 

7 Real Ampl Temperature amplitude at the soil surface [K] prescribed for nodes where 
Kode(n)=±4. Set equal to zero when no Kode(n)=±4 is specified. 

7 Real tPeriod Time interval for the completion of one temperature cycle (usually 1 day) [T]. 
 
 
+ Block E need not be supplied if logical variables lTemp (Block A) is set equal to .false. 
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 Table 10.6. Block F - Root water uptake information.+ 

  
 
Record Type Variable Description 

  
1,2  -   - Comment lines. 

3 Integer iMoSink Type of root water uptake stress response function. 
   = 0; Feddes et al. [1978] 
   = 1; S-shaped, van Genuchten [1987] 

3 Real OmegaC Critical root water uptake index. Set equal to zero for a noncompensated root 
water uptake and smaller than zero for compensated root water uptake [-]. 

4  -  - Comment line. 

   The following records (records 5a, 6a, 7a) are given only if iMoSink=0. 

5a Real P0 Value of the pressure head, h1 (Fig. 2.1), below which roots start to extract 
water from the soil. 

5a Real P2H Value of the limiting pressure head, h3, below which the roots cannot extract 
water at the maximum rate (assuming a potential transpiration rate of r2H). 

5a Real P2L As above, but for a potential transpiration rate of r2L.   

5a Real P3 Value of the pressure head, h4, below which root water uptake ceases (usually 
equal to the wilting point). 

5a Real r2H Potential transpiration rate [LT-1] (currently set at 0.5 cm/day). 

5a Real r2L Potential transpiration rate [LT-1] (currently set at 0.1 cm/day). 
   The above input parameters permit one to make the variable h3 a function of the 

potential transpiration rate, Tp (h3 presumably decreases at higher transpiration 
rates). HYDRUS currently implements the same linear interpolation scheme as 
used in several versions of the SWATRE code (e.g., Wesseling and Brandyk 
[1985]) and in the SWMS_2D [Šimůnek et al., 1992]. The scheme is based on 
the following interpolation:   
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6a  -  - Comment line. 

7a Real POptm(1) Value of the pressure head, h2, below which roots start to extract water at the 
maximum possible rate (material number 1). 

7a Real POptm(2) As above (material number 2). 
.  .  .                        . 
.  .  .                        . 
7a Real POptm(NMat) As above (for material number NMat). 

   The following record (record 5b) is given only if iMoSink=1. 
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 Table 10.6. (continued) 
  
 
Record Type Variable Description 

  
5b Real P50 Value of the pressure head, h50 (Fig. 2.1), at which the root water uptake is 

reduced by 50%. 
5b Real P3 Exponent p in the S-shaped root water uptake stress response function.  

Recommended value is 3. 
5b Real PW Wilting point, i.e., the pressure head below which the root water uptake ceases.   

   The following records are given only if lChem=.true. . 

8  -  - Comment line. 

9 Logical lSolRed =.true. : root water uptake is reduced due to salinity. 
   =.false.: otherwise. 

   The following records are given only if lSolRed=.true. . 

10  -  - Comment line. 

11 Logical lSolAdd =.true. if the effect of salinity stress is additive to the pressure head stress. 
   =.false. if the effect of salinity stress is multiplicative to the pressure head stress. 

12  -  - Comment line. 

   The following two values are specified when the root water uptake salinity 
stress response function is described with the S-shaped function (2.8) or (2.9), 
i.e., lMsSink=.true.. 

13a Real c50 Value of the osmotic head hφ50, at which the root water uptake is reduced by 
50%.  This value is specified only when lSolAdd=.false.. 

13a Real P3c Exponent, p, in the S-shaped root water uptake salinity stress response function. 
 Recommended value is 3. This value is specified only when lSolAdd=.false.. 

   The following two values are specified when the root water uptake salinity 
stress response function is described with the threshold-slope function of Maas 
[1990], i.e., lMsSink=.false.. 
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13a Real c50 Value of the minimum osmotic head (the salinity threshold) hφ

M, above which 
root water uptake is not reduced. This value is specified only when 
lSolAdd=.false.. 
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 Table 10.6. (continued) 
  
 
Record Type Variable Description 

  
13a Real P3c Slope, sφ, of the curve determining fractional root water uptake decline per unit 

increase in salinity below the threshold. This value is specified only when 
lSolAdd=.false.. 

13 Real aOsm(1) Osmotic coefficient, a1, for the first solute [L4M-1]. 

13 Real aOsm(2) Osmotic coefficient, a2, for the second solute [L4M-1]. 
 . . . 
 . . . 
13 Real aOsm(NSD) Osmotic coefficient, an, for the last solute [L4M-1]. 

13 Logical lMsSink =.true. : S-shaped root water uptake salinity stress response function. 
   =.false.: threshold function according Maas [1990]. 
 
 
+ Block F is not needed when the logical variable SinkF (Block A) is set equal to .false. . 
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 Table 10.7a. Block G - Finite element mesh information for two-dimensional applications. 
  
 
Record  Type  Variable   Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Meshtria.txt file; set equal to 1 for current version. 

2 Integer iDummy Dummy variable. Set equal to 1. 

2 Integer NumNP Number of nodal points. 

2 Integer nEdges Number of mesh edges. 

2 Integer NumEl Number of finite elements (only triangles are allowed). 

3 Integer n Nodal number. 

3 Real x(n) x-coordinate of node n [L] (always a horizontal coordinate). 

3 Real z(n) z-coordinate of node n [L]. z is the vertical coordinate for problems involving 
vertical planar or axisymmetric flow. For axisymmetric flow, z coincides with 
the vertical axis of symmetry. 

   Record 3 information is required for each node n. Numbering of the nodes is 
arbitrary. 

4  -  - Comment line. 

5 Integer e Edge number. Not read by the calculation module. 

5 Integer iEpb(e) Number of the beginning node of edge e. Not read by the calculation module. 

5 Integer iEpe(e) Number of the ending node of edge e. Not read by the calculation module. 

   Record 5 information is required for each edge e. Record 5 information is not 
read by the calculation module. 

6  -  - Comment line. 

7 Integer t Triangular element number. 

7 Integer KX(t,1) Global nodal number of the first triangle's vertex. 

7 Integer KX(t,2) Global nodal number of the second triangle's vertex. 

7 Integer KX(t,3) Global nodal number of the third triangle's vertex. 

   Record 7 information is required for each triangle t. 
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 Table 10.7b. Block G - Finite element mesh information for three-dimensional applications. 
  
 
Record  Type  Variable   Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Meshtria.txt file; set equal to 1 for current version. 

2  -  - Comment line. 

3  -  - Comment line. 

4 Integer lGenMesh Set equal to 0 if simple structured finite element mesh for hexahedral transport 
domains is used.  

   Set equal to 1 if unstructured finite element mesh is used. 

5  -  - Comment line. 

6 Integer NumNP Number of nodal points. 

6 Integer NumEl Number of finite elements (only tetrahedrals are allowed). 

6 Integer IJ Number of nodes on the base of the hexahedral domain. Set equal to zero if 
simple hexahedral domain is not used. 

6 Integer nNx Number of nodes in the x-direction of the hexahedral domain. Set equal to zero if 
simple hexahedral domain is not used. 

6 Integer nNy Number of nodes in the y-direction of the hexahedral domain. Set equal to zero if 
simple hexahedral domain is not used. 

6 Integer nNz Number of nodes in the z-direction of the hexahedral domain. Set equal to zero if 
simple hexahedral domain is not used. 

7  -  - Comment line. 

8 Integer n Nodal number. 

8 Real x(n) x-coordinate of node n [L]. 

8 Real y(n) y-coordinate of node n [L]. 

8 Real z(n) z-coordinate of node n [L]. z is the vertical coordinate. 

   Record 3 information is required for each node n.  

9  -  - Comment line. 

10  -  - Comment line. 

11 Integer t Tetrahedral element number. 

11 Integer KX(e,1) Global nodal number of the first corner node i. 
11 Integer KX(e,2) Global nodal number of the second corner node j. 
11 Integer KX(e,3) Global nodal number of the third corner node k. 
11 Integer KX(e,4) Global nodal number of the forth corner node l. 
11 Integer KX(e,5) Global nodal number of the fifth corner node m. 
11 Integer KX(e,6) Global nodal number of the sixth corner node n. 
11 Integer KX(e,7) Global nodal number of the seventh corner node o. 
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 Table 10.7b. (continued) 
  
 
Record Type Variable Description 

  
11 Integer KX(e,8) Global nodal number of the eighth corner node p. Indices i, j, k, l, m, n, o and p, 

refer to the corner nodes of an element e taken in a certain orientation as 
described in Section 6.1. KX(e,5) for tetrahedral and KX(e,7) for triangular 
prismatic elements must be equal to zero. 

11 Integer KX(e,9) Code specifying the subdivision of hexahedral and triangular prismatic elements 
into tetrahedrals (See Chapter 6.1 and Figure 6.1). 

   Record 11 information is required for each triangle t. 
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 Table 10.8. Block H - Nodal information. 
  
 
Record  Type  Variable   Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Domain.dat file; set equal to 2 for current version. 

2,3  -  - Comment lines. 

4 Integer NS Number of solutes in a chain reaction. 

4 Integer iEquil This variable is read only if the user interface is used. 
   = 1; Equilibrium solute transport is considered. 
   = 0; Nonequilibrium solute transport is considered. 
   Set equal to 1 if lChem is equal to .false.. 

5,6  -  - Comment line. 

7 Integer n Nodal number. 

7 Integer Kode(n) Code specifying the type of boundary condition applied to a particular node.  
Permissible values are 0,1,±2, ±3, ±4,..., ±NumKD (see Section 8.3).  

7 Real hNew(n) Initial value of the pressure head at node n [L] when variable lInitW in Block A 
is equal to .true.. Initial value of the water content at node n [L] when variable 
lInitW in Block A is equal to .false.. If lWat=.false. in Block A, then hNew(n) 
represents the initial guess of the pressure head (water content) for steady state 
conditions. 

7 Real Q(n) Prescribed recharge/discharge rate at node n; [L2T-1] for planar flow, [L3T-1] for 
axisymmetric flow. Q(n) is negative when directed out of the system. When no 
value for Q(n) is needed, set Q(n) equal to zero. 

 7 Integer MatNum(n) Index for material whose hydraulic and transport properties are assigned to node 
n. 

7 Real Beta(n) Value of the water uptake distribution, b(x,y,z) [L-2], in the soil root zone at node 
n. Set Beta(n) equal to zero if node n lies outside the root zone. 

7 Real Axz(n) Nodal value of the dimensionless scaling factor αh [-] associated with the 
pressure head. 

7 Real Bxz(n) Nodal value of the dimensionless scaling factor αK [-] associated with the 
saturated hydraulic conductivity. 

7  Real Dxz(n) Nodal value of the dimensionless scaling factor αθ [-] associated with the water 
content. 

7 Real Temp(n) Initial value of temperature at node n [oC] (if lTemp=.false. then set equal to 0 or 
any initial value, which is to be used with temperature dependent water flow and 
solute transport). 

7 Real Conc(1,n) Initial value of the concentration of the first solute at node n [ML-3] (do not have 
to be specified if lChem=.false.). 
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 Table 10.8. (continued) 
  
 
Record Type Variable Description 

  
7 Real Conc(2,n) Initial value of the concentration of the second solute at node n [ML-3] (must not 

be specified if lChem=.true. and NS < 2). 
. . . . 
. . . . 
7 Real Conc(i,n) Initial value of the concentration of the last solute at node n [ML-3] (must not be 

specified if lChem=.true. and NS < i).. 

7 Real Sorb(1,n) Initial value of the adsorbed concentration on type-2 sites or initial concentration 
in the immobile zone of the first solute at node n [ML-3]. This variable does not 
have to be specified if lChem=.false.. or lEquil=.true. . 

7 Real Sorb(2,n) Initial value of the adsorbed concentration on type-2 sites or initial concentration 
in the immobile zone of the second solute at node n [ML-3]. This variable does 
not have to be specified if lChem=.false. or lEquil=.true. or NS < 2. 

. . . . 

. . . . 
7 Real Sorb(NS,n) Initial value of the adsorbed concentration on type-2 sites or initial concentration 

in the immobile zone of the NSth solute at node n [ML-3]. This variable does not 
have to be specified if lChem=.false. or lEquil=.true. . 
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 Table 10.9. Block I - Element information. 
  
 
Record  Type  Variable   Description 

  
1,2  -  - Comment lines. 

3 Integer e Element number. 

   The following 3 numbers (Record 3a) are only for two-dimensional applications. 

3a Real Angle(e) Angle in degrees between K1
A and the x-coordinate axis assigned to each element 

e. 

3a Real ConA1(e) First principal component, K1
A, of the dimensionless tensor KA which describes the 

local anisotropy of the hydraulic conductivity assigned to element e. 

3a Real ConA2(e) Second principal component, K2
A. 

   The following number (Record 3b) is only for two-dimensional applications. 

3b Real iAniz(e) Index of anisotropy tensor (Record 11 of Block B) assigned to each element e. 

3 Integer LayNum(e) Subregion number assigned to element e. 
   In general, record 3 information is required for each element e, starting with e=1 

and continuing sequentially until e=NumEl. 
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 Table 10.10. Block J - Boundary information. 
  
 
Record  Type  Variable   Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Boundary.in file; set equal to 3 for current version. 

2,3  -  - Comment lines. 

4 Integer NumBP Number of boundary nodes for which Kode(n) is not equal to 0. 

4 Integer NObs Number of observation nodes for which values of the pressure head, the water 
content, temperature (for lTemp=.true.), and the solution and sorbed 
concentrations (for lChem=.true.) are printed at each time level. 

4 Logical SeepF .true. if one or more seepage faces is to be considered. 

4  Logical FreeD Set this variable equal to .true. if a unit vertical hydraulic gradient boundary 
condition (free drainage) is used at the bottom boundary. Otherwise set equal to 
.false. . 

4 Logical DrainF Set this logical variable equal to .true. if a drain is to be simulated by means of a 
boundary condition. Otherwise set equal to .false.. Section 5.3.7 explains how 
tile drains can be represented as boundary conditions in a regular finite element 
mesh. 

4 Logical qGWLF Set this variable equal to .true. if the discharge-groundwater level relationship 
q(GWL) given by equation (8.1) is used as the bottom boundary condition; 
GWL=h-GWL0L, where h is the pressure head at the boundary. 

5  -  - Comment line. 

6 Logical lInterp Logical variable indicating that time-variable boundary pressure heads should 
be interpolated with time. 

6 Logical lVarBC Logical variable indicating that the time-variable boundary pressure head 
boundary condition should be changed to zero flux when the specified 
number is larger than 999999. 

6 Logical lFluxHead Logical variable indicating that the zero flux boundary condition should be 
applied on the part of the boundary where the time-variable boundary pressure 
head is negative. 

6 Logical lAtmHead Logical variable indicating that the atmospheric boundary condition should be 
applied on the part of the boundary where the time-variable boundary pressure 
head is negative. 

6 Logical lSeepHead Logical variable indicating that the seepage face boundary condition should be 
applied on the part of the boundary where the time-variable boundary pressure 
head is negative. 

6 Logical lAtmGWL Logical variable indicating that the time-variable flux boundary condition 
should be treated similarly as the atmospheric boundary conditions, i.e., with 
limiting pressure head values hCritA and hCritS. 
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 Table 10.10. (continued) 
  
 
Record Type Variable Description 

  
6 Logical lAtmSeep Logical variable indicating that the atmospheric boundary condition should be 

applied on the part of the boundary where the seepage face is not active. 

6 Logical lSnow Logical variable indicating that the snow accumulates at the atmospheric 
boundary condition whenever temperatures are below zero. 

7  -  - Comment line. 

8 Integer KXB(1) Global node number of the first of a set of sequentially numbered boundary 
nodes for which Kode(n) is not equal to zero. 

8 Integer KXB(2) As above for the second boundary node. 
.  .  .   . 
.  .  .   . 
8 Integer KXB(NumBP) As above for the last boundary node. 

9  -  - Comment line. 

10 Real Width(1) Width [L] (for 2D applications) or surface area (for 3D applications) [L2]  of the 
boundary associated with boundary node KXB(1). Width(n) includes half the 
boundary length for 2D applications (or one quarter of the boundary surface 
area for 3D applications) of each element connected to node KXB(n) along the 
boundary. The type of boundary condition assigned to KXB(n) is determined by 
the value of Kode(n). In case of axisymmetric flow, Width(n) represents the area 
of the boundary strip [L2] associated with node KXB(n), and along a horizontal 
boundary should be calculated as 

 -1 -1 1 1( ) [( 2 )( - ) ( 2 )( - )]
3 j j j j j j j jWidth j x x x x x x x x
π

+ += + + +  

   If a unit vertical hydraulic gradient or a deep drainage boundary condition is 
specified at node n, then Width(n) represents only the horizontal component of 
the boundary. 

10 Real Width(2) As above for node KXB(2). 
.  .  .   . 
.  .  .   . 
10 Real  Width(NumBP) As above for node KXB(NumBP). 

11  -  - Comment line. 

12 Real rLen Width (for 2D) or surface area (for 3D) of soil surface associated with 
transpiration [L]; represents surface area [L2] in case of axisymmetrical flow. 
Set rLen equal to zero for problems without transpiration. 

13  -  - Comment line. 

14 Real GWL0L Reference position of groundwater table (usually the z-coordinate of the soil 
surface). 

14 Real Aqh Value of the parameter Aqh [LT-1] in the q(GWL)-relationship (equation (8.1)); 
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set to zero if qGWLF=.false. 

     . 
 Table 10.10. (continued) 
  
 
Record Type Variable Description 

  
14 Real Bqh Value of the parameter Bqh [L-1] in the q(GWL)-relationship (equation (8.1)); set 

to zero if qGWLF =.false. 

   Records 13 and 14 are provided only when the logical variable qGWLF =.true. 

15  -  - Comment line. 

16 Integer Node(1) Global node number of the first observation node for which values of the 
pressure head, the water content, temperature (for lTemp=.true.), and the 
solution and sorbed concentrations (for lChem=.true.) are printed at each time 
level.  It does not have to be specified if NObs = 0. 

16 Integer Node(2) Same as above for the second observation node.  It does not have to be specified 
if NObs < 2. 

.  .  .     . 

.  .  .    . 
16 Integer Node(NObs) Same as above for the last observation node. 

   Records 15 and 16 are provided only when the variable NObs > 0. 

17   -  - Comment line. 

18 Integer NPart Number of fictional particles, for which their trajectory is to be calculated. 

19 Integer NodeP(1) The node number of the first fictional particle. 
19 Integer NodeP(2) The second fictional particle. 
.  .  .    . 
19 Integer NodeP(NObs) The last fictional particle. 

   Records 17 through 19 are provided only for two-dimensional applications and 
when particle option is enabled. 

20,21  -  - Comment lines. 

22 Integer NSeep Number of seepage faces expected to develop. 

23  -  - Comment line. 

24 Integer NSP(1) Number of nodes on the first seepage face. 
24 Integer NSP(2) Number of nodes on the second seepage face. 
.  .  .    . 
.  .  .    . 
24 Integer NSP(NSeep) Number of nodes on the last seepage face. 

25  -  - Comment line. 

26 Integer NP(1,1) Sequential global number of the first node on the first seepage face. 
26 Integer NP(1,2) Sequential global number of the second node on the first seepage face. 
.  .  .    . 
.  .  .    . 
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26 Integer NP(1,NSP(1)) Sequential global number of the last node on the first seepage face. 

 Table 10.10. (continued) 
  
 
Record Type Variable Description 

  
   Record 26 information is provided for each seepage face. 
   Records 20 through 26 information is not provided if the logical variable SeepF 

is set equal to .false. . 

27,28  -  - Comment lines. 

29 Integer NDr Number of drains. See Section 5.3.7 for a discussion on how tile drains can be 
represented as boundary conditions in a regular finite element mesh. 

29 Real DrCorr Additional reduction in the correction factor Cd (See Section 5.3.7). 

30  -  - Comment line. 

31 Integer ND(1) Global number of the first drain. 
31 Integer ND(2) Global number of the second drain. 
.  .  .    . 
.  .  .    . 
31 Integer ND(NDr) Global number of the last drain. 

32  -  - Comment line. 

33 Integer NElD(1) Number of elements surrounding the first drain. 
33 Integer NElD(2) Number of elements surrounding the second drain. 
.  .  .    . 
.  .  .    . 
33 Integer NElD(NDr) Number of elements surrounding the last drain. 

34  -  - Comment line. 

35 Real EfDim(1,1) Effective diameter of the first drain, de [L] (see Section 5.3.7). 
35 Real EfDim(2,1) Dimension of the square in finite element mesh representing the first drain, D 

[L] (see Section 5.3.7). 

   Record 35 information is provided for each drain. 

36  -  - Comment line. 

37 Integer KElDr(1,1) Global number of the first element surrounding the first drain. 
37 Integer KElDr(1,2) Global number of the second element surrounding the first drain. 
.  .  .    . 
.  .  .    . 
37 Integer KElDr(1,NElD(1)) Global number of the last element surrounding the first drain. 

   Record 37 information is provided for each drain. 
   Records 27 through 37 are provided only if the logical variable DrainF is set 

equal to .true. . 

38,39  -  - Comment lines. 
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 Table 10.10. (continued) 
  
 
Record Type Variable Description 

  
40 Integer KodCB(1) Code specifying the type of boundary condition for solute transport applied to a 

particular node. Positive and negative signs indicate that first-, or second- or 
third- (depending upon the calculated water flux Q), type boundary conditions 
are implemented, respectively. In case of time-independent boundary conditions 
(Kode(1)= ±1, ±2, ±5, or ±6; See Block H), KodCB(1) also refers to the field 
cBound for the value of the solute transport BC. cBound(i,abs(KodCB(1))) is the 
value of the boundary condition for node KXB(1) (the first of a set of 
sequentially numbered boundary nodes for which Kode(N) is not equal to zero). 
Permissible values are ±1, ±2,..., ±5, ±6,-7. When KodCB(1) equals -7, a special 
type of boundary condition for volatile solutes described by equations (3.39) 
and (3.40) is applied. 

40 Integer KodCB(2) Same as above for the second boundary node. 
.  .  .   . 
.  .  .   . 
40 Integer KodCB(NumBP) Same as above for the last boundary node. 

   Records 38 through 40 are provided only if the logical variable lChem (Block 
A) is set equal to .true. . 

41,42  -  - Comment line. 

243 Integer KodTB(1) Code specifying the type of boundary condition for heat transport applied to a 
particular node. Positive and negative signs mean that first-, or second- or third- 
(depending upon the calculated water flux Q) type boundary conditions will be 
implemented, respectively. In case of time-independent boundary conditions 
(Kode(1)= ±1, ±2, ±5, or ±6; See Block H), KodTB(1) refers to the vector 
TBound for the value of the heat transport BC. TBound(abs(KodTB(1))) is the 
value of the boundary condition for node KXB(1) (the first of a set of 
sequentially numbered boundary nodes for which Kode(N) is not equal to zero). 
Permissible values are ±1,..., ±6. 

43 Integer KodTB(2) Same as above for the second boundary node. 
.  .  .   . 
.  .  .   . 
43 Integer KodTB(NumBP) Same as above for the last boundary node. 

   Records 41 through 43 are provided only if the logical variable lTemp (Block A) 
is set equal to .true. . 
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 Table 10.11. Block K - Atmospheric information.+ 
  
 
Record Type Variable  Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Atmosph.in file; set equal to 3 for current version. 

2,3  -  - Comment lines. 

4 Integer MaxAl Number of atmospheric data records. 

5  -  - Comment line. 

6 Real hCritS Maximum allowed pressure head at the soil surface [L].  

7  -  - Comment line. 

8 Real tAtm(i) Time for which the i-th data record is provided [T]. 

8 Real Prec(i) Precipitation [LT-1] (in absolute value). 

8 Real rSoil(i) Potential evaporation rate [LT-1] (in absolute value). 

8 Real rRoot(i) Potential transpiration rate [LT-1] (in absolute value). 

8 Real hCritA(i) Absolute value of the minimum allowed pressure head at the soil surface [L]. 

8 Real rGWL(1) Drainage flux [LT-1] across the bottom boundary, or other time-dependent 
prescribed flux boundary condition (positive when water leaves the flow region), 
for nodes where Kode(n)=-3; set to zero when no Kode(n)=-3 boundary condition 
is specified. 

8 Real GWL(1) Groundwater level [L] (usually negative), or other time-dependent prescribed head 
boundary condition, for nodes where Kode(n)=+3; set equal to zero when no 
Kode(n)=+3 is specified. The prescribed value of the pressure head is 
h=GWL+GWL0L. 

8 Real rGWL(2) Drainage flux [LT-1] for nodes where Kode(n)=-7; set to zero when no Kode(n)=-7 
boundary condition is specified. 

8 Real GWL(2) Groundwater level [L] for nodes where Kode(n)=+7; set equal to zero when no 
Kode(n)=+7 is specified. 

8 Real rGWL(3) ditto for Kode(n)=-8. 
8 Real GWL(3) ditto for Kode(n)=+8. 
8 Real rGWL(4) ditto for Kode(n)=-9. 
8 Real GWL(4) ditto for Kode(n)=+9. 

8 Real Temp1(i) First time-dependent temperature [K] prescribed for nodes where Kode(n)= ±3, 
±4, ±7, ±8, or ±9 (must not be specified if lTemp=.false. and lChem=.true.; set 
equal to zero when no Kode(n)= ±3, ±4, ±7, ±8, or ±9 or when the flux is directed 
out of the flow domain). 
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 Table 10.11.  (continued) 
  
 
Record Type Variable Description 

  
8 Real Temp2(i) Second time-dependent temperature [K] prescribed for nodes where Kode(n)= ±3, 

±4, ±7, ±8, or ±9 (must not be specified if lTemp=.false. and lChem=.true.; set 
equal to zero when no Kode(n)= ±3, ±4, ±7, ±8, or ±9 or when the flux is directed 
out of the flow domain). 

8 Real Conc1(1,i) First time-dependent solute concentration [ML-3] prescribed for nodes where 
Kode(n)= ±3, ±4, ±7, ±8, or ±9 (does not need to be specified if lChem=.false.; set 
equal to zero when no Kode(n)= ±3, ±4, ±7, ±8, or ±9, or when the flux is directed 
out of the flow domain). 

8 Real crt (1,i) Second time-dependent solute concentration [ML-3] prescribed for nodes where 
Kode(n)= ±3, ±4, ±7, ±8, or ±9 (does not need to be specified if lChem=.false.; set 
equal to zero when no Kode(n)= ±3, ±4, ±7, ±8, or ±9, or when the flux is directed 
out of the flow domain). 

8 Real cht (1,i) Third time-dependent solute concentration [ML-3] prescribed for nodes where 
Kode(n)= ±3, ±4, ±7, ±8, or ±9 (does not need to be specified if lChem=.false.; set 
equal to zero when no Kode(n)= ±3, ±4, ±7, ±8, or ±9, or when the flux is directed 
out of the flow domain). 

8 Real cPrec(2,i) Same as cPrec(1,i) for the second solute (does not need to be specified if 
lChem=.false. or NS < 2). 

8 Real crt(2,i) Same as crt(1,i) for the second solute (does not need to be specified if 
lChem=.false. or NS < 2). 

8 Real cht(2,i) Same as cht(1,i) for the second solute (does not need to be specified if 
lChem=.false. or NS < 2). 

   The last three entries are entered for each solute from 1 to NS. 

   The total number of atmospheric data records is MaxAl (i=1,2, ..,MaxAl). 
 
 
+  Block K is not read in if the logical variable AtmInf (Block A) is set equal to .false. . 
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 Table 10.12. Block L - Dimension Information. 
  
 
Record Type Variable  Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Dimensio.in file; set equal to 2 for current version. 

2  -  - Comment lines. 

3 Integer NumNPD Maximum number of nodes in finite element mesh 

3 Integer NumElD Maximum number of elements in finite element mesh 

3 Integer NumBPD Maximum number of boundary nodes for which Kode(n)≠0 

3 Integer MBandD Maximum dimension of the bandwidth of matrix A 

3 Integer NSeepD Maximum number of seepage faces 

3 Integer NumSPD Maximum number of nodes along a seepage face 

3 Integer NDrD Maximum number of drains 

3 Integer NElDrD Maximum number of elements surrounding one drain 

3 Integer NMatD Maximum number of materials 

3 Integer NObsD Maximum number of observation nodes (maximum is 10) 

3 Integer NSD Maximum number of solutes in a chain reaction. 

3 Integer NAnisD Maximum number of anisotropy tensors for 3d applications. Set equal to 1 for 2D 
applications. 
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 Table 10.13. Block M - Inverse solution information.+ 
  
 
Record  Type  Variable   Description 

  
1 Char cVersion Set text equal to "Pcp_File_Version=". 

1 Integer iVersion Version of the Fit.in file; set equal to 3 for current version. 

2 Integer NCase  Number of cases being considered (only for the first data set). 

3 Char  Title1 Descriptive title for simulation. 

4 Char  Title2 Descriptive title for simulation. 

5  -  - Comment line. 

6 Integer NOBB Number of observed data. 

6 Integer MIT Maximum number of iterations for the inverse problem. 

6 Integer iWeight Type of weighting used for the data set. 
   = 0; no internal weighting. 
   = 1; weighting by mean ratio. 
   = 2; weighting by standard deviation. 

7  -  - Comment line. 

8 Logical lWatF Set this logical variable equal to .true. when the soil hydraulic parameters are to be 
optimized. 

8 Logical lChemF Set this logical variable equal to .true. when the solute transport parameters are to 
be optimized. 

8 Integer NMat Number of soil materials.  Materials are identified by the material number, 
MatNum, specified in Block H. 

8 Logical lTempF Set this logical variable equal to .true. when the heat transport parameters are to be 
optimized. 

8 Integer iConcType Type of concentration data that are used in the objective function. 
   = 0: resident concentrations in the liquid phase 
   = 1: log resident concentrations in the liquid phase 
         : area averaged resident concentrations in the liquid phase when iPos=0 
   = 2: outflow concentration 
   = 3: concentration flux 
   = 4: cumulative concentration flux 
   = 5: total concentration (both liquid and sorbed phases, both equilibrium and 

nonequilibrium phases) 
   = 6: temperature 

9  -  - Comment line. 

10 Integer iModel Soil hydraulic properties model: 
   = 0; van Genuchten's [1980] model containing six parameters. 
   = 1; modified van Genuchten's model containing ten parameters, Vogel and 

Císlerová [1988]. 
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 Table. 10.13. (continued). 
  
 
Record  Type  Variable   Description 

  
   = 2; Brooks and Corey's [1964] model containing six parameters.  
   = 3; van Genuchten's [1980] model with air-entry value of -2 cm and with six 

parameters. 
   = 4; Kosugi’s [1996] model with six parameters. 
   = 5; dual porosity model of Durner [1994] with nine parameters. 
   = 6; dual-porosity system with transfer proportional to the effective saturation (9 

parameters) (see Sections 2.1.2 and 2.8). 
= 7; dual-porosity system with transfer proportional to the pressure head (11 
parameters) (see Sections 2.1.2 and 2.8). 

10 Integer iHyst Hysteresis in the soil hydraulic properties: 
   = 0; no hysteresis 
   = 1; hysteresis in the retention curve only 
   = 2; hysteresis in both the retention and hydraulic conductivity functions 
   = 3; Hysteresis using Bob Lenhard’s model [Lenhard et al., 1991; Lenhard and 

Parker, 1992]. 

10 Logical lAniz =.true. is the coefficient of anisotropy is to be optimized. 

11  -  - Comment line. 

12 Integer iQSame Parameter constraints 
   = 0: θs

d > θs
w  

   = 1: θs
d = θm

d , θs
w = θm

w  
   = 2: θs

d = θs
w = θm  

12 Logical lAw2Ad .true. if parameter constraint αw = 2 αd is to be considered. 
   .false. if no constraint on αw and αd is imposed. 

12 Logical lKSame .true. if parameter constraint Ks
w = Ks

d is to be considered. 
   .false. if no constraint on Ks

w and Ks
d is imposed. 

12 Integer iKappa = -1 if the initial condition is to be calculated from the main drying branch. 
   =  1 if the initial condition is to be calculated from the main wetting branch. 

   Records 11 and 12 are provided only when iHyst > 0. 
   Records 9 through 12 are specified only when the logical variable lWatF is equal 

to .true.. 

13  -  - Comment line. 

14 Integer NS Number of solutes (must be equal to 1). 
   Records 13 and 14 are specified only when the logical variable lChemF is equal to 

.true.. 

15  -  -  Comment line. 

16 Real Par(1,M) Initial estimate of parameter θr for material M [-]. 
16 Real Par(2,M) Initial estimate of parameter θs for material M [-]. 
16 Real Par(3,M) Initial estimate of parameter α for material M [L-1]. 



 

 
 
 186

 Table. 10.13. (continued). 
  
 
Record  Type  Variable   Description 

  
16 Real Par(4,M) Initial estimate of parameter n for material M [-]. 
16 Real Par(5,M) Initial estimate of parameter Ks for material M [LT-1]. 
16 Real Par(6,M) Initial estimate of parameter l for material M [-]. 

   The following four parameters are specified only when iModel=1. 
16 Real Par(7,M) Initial estimate of parameter θm for material M [-]. 
16 Real Par(8,M) Initial estimate of parameter θa for material M [-]. 
16 Real Par(9,M) Initial estimate of parameter θk for material M [-]. 
16 Real Par(10,M) Initial estimate of parameter Kk for material M [LT-1]. 

   The following four parameters are specified only when iModel=0 and iHyst>1. 
16 Real Par(7,M) Initial estimate of parameter θm for material M [-]. 
16 Real Par(8,M) Initial estimate of parameter θs

w for material M [-]. 
16 Real Par(9,M) Initial estimate of parameter αw for material M [L-1]. 
16 Real Par(10,M) Initial estimate of parameter Ks

w for material M [LT-1]. 

17 Integer Index(1,M) Parameter estimation index for parameter θr, material M [-]. 
   = 0; Coefficient is known and kept constant during optimization. 
   = 1; Coefficient is unknown and estimated by curve fitting the data. 
17 Integer Index(2,M) Parameter estimation index for parameter θs, material M [-]. 
17 Integer Index(3,M) Parameter estimation index for parameter α, material M [-]. 
17 Integer Index(4,M) Parameter estimation index for parameter n, material M [-]. 
17 Integer Index(5,M) Parameter estimation index for parameter Ks, material M [-]. 
17 Integer Index(6,M) Parameter estimation index for parameter l, material M [-]. 

   The following four parameter estimation indices are specified only when 
iModel=1. 

17 Integer Index(7,M) Parameter estimation index for parameter θm, material M [-]. 
17 Integer Index(8,M) Parameter estimation index for parameter θa, material M [-]. 
17 Integer Index(9,M) Parameter estimation index for parameter θk, material M [-]. 
17 Integer Index(10,M) Parameter estimation index for parameter Kk, material M [-]. 

   The following four parameter estimation indices are specified only when 
iModel=0 and iHyst>1. 

17 Integer Index(7,M) Parameter estimation index for parameter θm, material M [-]. 
17 Integer Index(8,M) Parameter estimation index for parameter θs

w, material M [-]. 
17 Integer Index(9,M) Parameter estimation index for parameter αw, material M [-]. 
17 Integer Index(10,M) Parameter estimation index for parameter Ks

w, material M [-]. 

18 Real BMn(1,M) Minimum constraint for parameter θr for material M [-] (dummy value if 
Index(1,M)=0). 

18 Real BMn(2,M) Minimum constraint for parameter θs, material M [-]. 
18 Real BMn(3,M) Minimum constraint for parameter α, material M [L-1]. 
18 Real BMn(4,M) Minimum constraint for parameter n, material M [-]. 
18 Real BMn(5,M) Minimum constraint for parameter Ks, material M [LT-1]. 
18 Real BMn(6,M) Minimum constraint for parameter l, material M [-]. 
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 Table. 10.13. (continued). 
  
 
Record  Type  Variable   Description 

  
   The following four minimum parameter constraints are specified only when 

iModel=1. 
18 Real BMn(7,M) Minimum constraint for parameter θm, material M [-]. 
18 Real BMn(8,M) Minimum constraint for parameter θa, material M [-]. 
18 Real BMn(9,M) Minimum constraint for parameter θk, material M [-]. 
18 Real BMn(10,M) Minimum constraint for parameter Kk, material M [LT-1]. 

   The following four minimum parameter constraints are specified only when 
iModel=0 and iHyst>1. 

18 Real BMn(7,M) Minimum constraint for parameter θm, material M [-]. 
18 Real BMn(8,M) Minimum constraint for parameter θs

w, material M [-]. 
18 Real BMn(9,M) Minimum constraint for parameter αw, material M [L-1]. 
18 Real BMn(10,M) Minimum constraint for parameter Ks

w, material M [LT-1]. 

19 Real BMx(1,M) Maximum constraint for parameter θr, material M [-] (dummy value if 
Index(1,M)=0). 

19 Real BMx(2,M) Maximum constraint for parameter θs, material M [-]. 
19 Real BMx(3,M) Maximum constraint for parameter α, material M [L-1]. 
19 Real BMx(4,M) Maximum constraint for parameter n, material M [-]. 
19 Real BMx(5,M) Maximum constraint for parameter Ks, material M [LT-1]. 
19 Real BMx(6,M) Maximum constraint for parameter l, material M [-]. 

   The following four maximum parameter constraints are specified only when 
iModel=1. 

19 Real BMx(7,M) Maximum constraint for parameter θm, material M [-]. 
19 Real BMx(8,M) Maximum constraint for parameter θa, material M [-]. 
19 Real BMx(9,M) Maximum constraint for parameter θk, material M [-]. 
19 Real BMx(10,M) Maximum constraint for parameter Kk, material M [LT-1]. 

   The following four maximum parameter constraints are specified only when 
iModel=0 and iHyst>1. 

19 Real BMx(7,M) Maximum constraint for parameter θm, material M [-]. 
19 Real BMx(8,M) Maximum constraint for parameter θs

w, material M [-]. 
19 Real BMx(9,M) Maximum constraint for parameter αw, material M [L-1]. 
19 Real BMx(10,M) Maximum constraint for parameter Ks

w, material M [LT-1]. 

   Records 15 through 19 are specified only when logical variable lWatF is equal to 
.true. and then must be provided for each material M (from 1 to NMat). 

   If lWDep=.true. (Block A) then the soil hydraulic parameters Par(i,M) must be 
specified at reference temperature Tref=20oC. 

20  -  -  Comment line. 

21 Real ChPar(1,M) Initial estimate of bulk density of material M, ρ [ML-3]. 
21 Real ChPar(2,M) Initial estimate of longitudinal dispersivity for material type M, DL [L]. 
21 Real ChPar(3,M) Initial estimate of transverse dispersivity for material type M, DL [L]. 
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 Table. 10.13. (continued). 
  
 
Record  Type  Variable   Description 

  
21 Real ChPar(4,M) Initial estimate of dimensionless fraction of the sorption sites classified as type-1, 

i.e., sites with instantaneous sorption when the chemical nonequilibrium option 
is considered. Set equal to 1 if equilibrium transport is to be considered. 

   Dimensionless fraction of the sorption sites in contact with mobile water when the 
physical nonequilibrium option is considered. Set equal to 1 if all sorption sites 
are in contact with mobile water. 

21 Real ChPar(5,M) Initial estimate of the immobile water content. Set equal to 0 when the physical 
nonequilibrium option is not considered. 

21 Real ChPar(6,M) Initial estimate of the ionic or molecular diffusion coefficient in free water, Dw [L2 
T-1]. 

21 Real ChPar(7,M) Initial estimate of the ionic or molecular diffusion coefficient in the gas phase, Dg 
[L2 T-1]. 

21 Real ChPar(8,M) Initial estimate of the adsorption isotherm coefficient, ks, for material type M [L3   
M-1].  Set equal to zero if no adsorption is to be considered. 

21 Real ChPar(9,M) Initial estimate of the adsorption isotherm coefficient, η, for material type M [L3M-

1].  Set equal to zero if a Langmuir adsorption isotherm is not to be considered. 
21 Real ChPar(10,M) Initial estimate of the adsorption isotherm coefficient, β, for material type M [-].  

Set equal to one if a Freundlich adsorption isotherm is not to be considered. 
21 Real ChPar(11,M) Initial estimate of the equilibrium distribution constant between the liquid and gas 

phases, kg, material type M [-]. 
21 Real ChPar(12,M) Initial estimate of the first-order rate constant for the dissolved phase, μw, material 

type M [T-1]. 
21 Real ChPar(13,M) Initial estimate of the first-order rate constant for the solid phase, μs, material type 

M [T-1]. 
21 Real ChPar(14,M) Initial estimate of the first-order rate constant for the gas phase, μg, material type M 

[T-1]. 
21 Real ChPar(15,M) Initial estimate of the rate constant, μw’, representing first-order decay for the first 

solute and zero-order production for the second solute in the dissolved phase, 
material type M [T-1]. 

21 Real ChPar(16,M) Initial estimate of the rate constant for the solid phase, μs’, material type M [T-1]. 
21 Real ChPar(17,M) Initial estimate of the rate constant for the gas phase, μg’, material type M [T-1]. 
21 Real ChPar(18,M) Initial estimate of the zero-order rate constant for the dissolved phase, γw, material 

type M [ML-3T-1]. 
21 Real ChPar(19,M) Initial estimate of the zero-order rate constant for the solid phase, γs, material type 

M [T-1]. 
21 Real ChPar(20,M) Initial estimate of the zero-order rate constant for the gas phase, γg, material type M 

[ML-3T-1]. 
21 Real ChPar(21,M) Initial estimate of the first-order mass transfer coefficient for nonequilibrium 

adsorption, ω, material type M [T-1]. 

22 Integer Index(1,M) Parameter estimation index for parameter ChPar(1,M). 
   = 0; Coefficient is known and kept constant during optimization. 
   = 1; Coefficient is unknown and estimated by curve fitting the data. 
. . . . 
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 Table. 10.13. (continued). 
  
 
Record  Type  Variable   Description 

  
22 Integer Index(21,M) Parameter estimation index for parameter ChPar(21,M). 

23 Real BMn(1,M) Minimum constraint for parameter ChPar(1,M) (dummy value if Index(1,M)=0). 
. . . . 
. . . . 
23 Real BMn(21,M) Minimum constraint for parameter ChPar(21,M). 

24 Real BMx(1,M) Maximum constraint for parameter ChPar(1,M) (dummy value if Index(1,M)=0). 
. . . . 
. . . . 
24 Real BMx(21,M) Maximum constraint for parameter ChPar(21,M). 

   Records 20 through 24 are specified only when the logical variable lChemF is 
equal to .true., in which case they must be provided for each material M (from 1 to 
NMat). 

   Records 20 through 24 are specified similarly for heat transport parameters when 
the logical variable lTempF is equal to .true.. In such case they must be provided 
for each material M (from 1 to NMat). 

25  -  -  Comment line. 

26 Real HO(i) Observation data. 
   Time t for iType(i)=0,1,2,3,4; 
   Pressure head h for iType(i)=5,6; 
   Dummy for iType(i)=7,8,9,10,11; 

26 Real FO(i) Observation data (see description with variable iType). 
   When iType(i)=2 and iPos(i)=0, then FO(i) represents the total volume of water in 

the entire flow domain. 
   When iType(i)=4 and iPos(i)=0, then FO(i) represents the average concentration 

of the entire flow domain. 
   Type of concentration data depends on iConcType. 

26 Integer iType(i) Type of observed data: 
   = 0: cumulative boundary water flux versus time 
   = 1: h(x,t) measurement 
   = 2: θ(x,t) measurement 
   = 3: boundary flux versus time 
   = 4: Conc(x,t) measurement 
   = 5: h(θ) measurement 
   = 6: K(h) measurement 
   = 7: prior knowledge of parameter α 
   = 8: prior knowledge of parameter n 
   = 9: prior knowledge of parameter θr 
   = 10: prior knowledge of parameter θs 
   = 11: prior knowledge of parameter Ks 
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 Table. 10.13. (continued). 
  
 
Record  Type  Variable   Description 

  
26 Integer iPos(i) Position of the observation node for iType(i)=1,2,4 (and iConcType=0, 1, 6); 

allowed values are 1, 2,...NObs. 
   When iType(i)=0 or 3 (and 4 when iConcType=2, 3, 4); then iPos(i) is equal to 

Kode(n) representing a particular type of boundary condition, e.g., 1 for a constant 
b.c., 2 for a seepage face, 3 for a varible b.c., 4 for an atmospheric b.c., 5 for a 
internal drains, and 6 for deep or free drainage. 

   When iType(i)=5,6,7,8,9,10, or 11, then iPos(i) represents the material number M; 
allowed values are 1, 2,...NMat. 

26 Real Weight(i) Weight associated with a particular data point. 
 
 
+  Block M is not needed if only the direct solution is calculated or for three-dimensional applications. 
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 11. OUTPUT DATA 
 
 The program output consists of 14+3ns output files organized into 3 groups: 
  T-level information 
   H_MEAN.OUT 
   V_MEAN.OUT 
   CUM_Q.OUT 
   RUN_INF.OUT 
   SOLUTEx.OUT 
   OBSNOD.OUT 
 
  P-level information 
   H.OUT 
   TH.OUT 
   CONCx.OUT 
   SORBCx.OUT 
   TEMP.OUT 
   V.OUT 
   BOUNDARY.OUT 
   BALANCE.OUT 
 
  A-level information 
   A_LEVEL.OUT 

 
 In addition, some of the input data are printed to filea CHECK.OUT and FIT.OUT.  Separate 
output files SOLUTEx.OUT, CONCx.OUT and SORBx.OUT are created for each solute. The 
various output files are described in detail below. The file CHECK.OUT summarizes the most 
important input variables, including the hydraulic and transport properties of each soil material. 
Results of the inverse solution are written to an output file FIT.OUT (Table 11.8). All output files 
are directed to the same directory as the input files, and must be created by the user prior to program 
execution (the directory is created automatically if the user interface is used).   
 T-level information - This group of output files contains information, which is printed at the 
end of each time step (or after n type steps). Printing can be suppressed by setting the logical 
variable ShortF in input Block A equal to .true.; the information is then printed only at selected print 
times. Output files printed at the T-level are described in Tables 11.1 through 11.5. Output file 
OBSNOD.OUT brings the information about the time change of the pressure head, water content, 
temperature, and solution and sorbed concentrations, in specified observation nodes. 
 P-level information - P-level information is printed only at prescribed print times. The 
following output files are printed at the P-level: 
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 H.OUT Nodal values of the pressure head  

 TH.OUT Nodal values of the water content  

 CONCx.OUT Nodal values of the solution concentrations 

 SORBx.OUT Nodal values of the nonequlibrium concentrations 

 TEMP.OUT Nodal values of the temperature 

 V.OUT Nodal values of the x- and y-components of the Darcian flux vector 

 BOUNDARY.OUT This file contains information about each boundary node, n, for which 
Kode(n) ≠ 0, including the discharge/recharge rate, Q(n), the boundary 
flux, q(n), the pressure head h(n), the water content θ(n), the temperature 
Temp(n), and the concentration Conc(ns , n). 

 BALANCE.OUT This file gives the total amount of water, heat and solute inside each 
specified subregion, the inflow/outflow rates to/from that subregion, 
together with the mean pressure head (hMean), mean temperature (TMean) 
and the mean concentration (cMean) over each subregion (see Table 11.6). 
Absolute and relative errors in the water and solute mass balances are also 
printed to this file. 

 
 The output files H.OUT, TH.OUT, CONCx.OUT, SORBx.OUT, TEMP.OUT, and V.OUT 
provide binary output of the specific variables. The user interface can convert these binary files into 
the ASCII files H.TXT, TH.TXT, CONCx.TXT, SORBx.TXT, TEMP.TXT, and V.TXT. 
 A-level information - A-level information is printed each time a time-dependent boundary 
condition is specified. The information is directed to output file A_LEVEL.OUT (Table 11.7). 
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 Table 11.1. H_MEAN.OUT - mean pressure heads. 
  
 
 hAtm Mean valuee of the pressure head calculated over a set of nodes for which Kode(n)=±4 (i.e., along part 

of a boundary controlled by atmospheric conditions) [L]. 

 hRoot Mean value of the pressure head over a region for which Beta(n)>0 (i.e., within the root zone) [L]. 

 hKode3 Mean value of the pressure head calculated over a set of nodes for which Kode(n)= ±3 (i.e., along part 
of a boundary where the groundwater level, the bottom flux, or other time-dependent pressure head 
and/or flux is imposed) [L]. 

 hKode1 Mean value of the pressure head calculated over a set of nodes for which Kode(n)= ±1 (i.e., along part 
of a boundary where time-independent pressure heads and/or fluxes are imposed) [L]. 

 hSeep Mean value of the pressure head calculated over a set of nodes for which Kode(n)= ±2 (i.e., along 
seepage faces) [L]. 

 hKode5 Mean value of the pressure head calculated over a set of nodes for which Kode(n)= ±5 [L]. 
   .    .  
   .    .  
   .    .  
 hKodeN Mean value of the pressure head calculated over a set of nodes for which Kode(n)= ±NumKD [L]. 
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 Table 11.2. V_MEAN.OUT - mean and total water fluxes.* 
  
 
 rAtm Potential surface flux per unit atmospheric boundary (Kode(n)=±4) [LT-1]. 

 rRoot Potential transpiration rate, Tp [LT-1]. 

 vAtm Mean value of actual surface flux per unit atmospheric boundary (Kode(n)=±4) [LT-1]. 

 vRoot Actual transpiration rate, Ta [LT-1]. 

 vKode3 Total value of the bottom or other flux across part of a boundary where the groundwater level, the 
bottom flux, or other time-dependent pressure head and/or flux is imposed (Kode(n)=±3), [L2T-1] or 
[L3T-1]+. 

 vKode1 Total value of the boundary flux across part of a boundary where time-independent pressure heads 
and/or fluxes are imposed, including internal sinks/sources (Kode(n)=±1), [L2T-1] or [L3T-1]+. 

 vSeep Total value of the boundary flux across a potential seepage face (Kode(n)=±2), [L2T-1] or [L3T-1]+. 

 vKode5 Total value of the flux across a boundary containing nodes for which Kode(n)=±5, [L2T-1] or [L3T-1]+. 
   .    .  
   .    .  
   .    .  
 vKodeN Total value of the flux across a boundary containing nodes for which Kode(n)=±NumKD, [L2T-1] or 

[L3T-1]+. 

 Runoff# Average surface run off per unit atmospheric boundary (Kode(n)=±4) [LT-1]. 

 Evapor# Average evaporation flux per unit atmospheric boundary (Kode(n)=±4) [LT-1]. 

 Infiltr# Average infiltration flux per unit atmospheric boundary (Kode(n)=±4) [LT-1]. 

 SnowLayer# Surface snow layer [L]. 
 
 
+ For plane (2D) and axisymmetric (or 3D) flow, respectively 
* Boundary fluxes are positive when water is removed from the system. 
# Only for two-dimensional problems. 
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 Table 11.3. CUM_Q.OUT - total cumulative water fluxes.* 
  
 
 CumQAP Cumulative total potential surface flux across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 

 CumQRP Cumulative total potential transpiration rate, [L2] or [L3]+. 

 CumQA Cumulative total actual surface flux across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 

 CumQR Cumulative total actual transpiration rate, [L2] or [L3]+. 

 CumQ3 Cumulative total value of the bottom or other boundary flux across part of a boundary where the 
groundwater level, the bottom flux, or other time-dependent pressure head and/or flux is imposed 
(Kode(n)=±3), [L2] or [L3]+. 

 CumQ1 Cumulative total value of the flux across part of a boundary along which time-independent pressure 
heads and/or fluxes are imposed, including internal sinks/sources (Kode(n)=±1), [L2] or [L3]+. 

 CumQS Cumulative total value of the flux across a potential seepage faces (Kode(n)=±2), [L2] or [L3]+. 

 CumQ5 Cumulative total value of the flux across a boundary containing nodes for which Kode(n)=±5, [L2] or 
[L3]+. 

   .    . 
   .    . 
   .    . 
 CumQN Cumulative total value of the flux across a boundary containing nodes for which Kode(n)=±NumKD, 

[L2] or [L3]+. 

 cRunoff# Cumulative surface run off across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 

 cEvapor# Cumulative evaporation flux across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 

 cInfiltr# Cumulative infiltration flux across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 
 
 
+ For plane (2D) and axisymmetric (or 3D) flow, respectively 
* Boundary fluxes are positive when water is removed from the system.  
# Only for two-dimensional problems. 
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 Table 11.4. RUN_INF.OUT - time and iteration information. 
  

 
 TLevel Time-level (current time-step number) [-]. 

 Time Time, t, at current time-level [T]. 

 dt Time step, Δt [T]. 

 IterW Number of iterations for water flow [-]. 

 IterC Number of iterations for solute transport [-]. 

 ItCum Cumulative number of iterations [-]. 

 Peclet Maximum local Peclet number [-]. 

 Courant Maximum local Courant number [-]. 
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 Table 11.5. SOLUTEx.OUT - actual and cumulative concentration fluxes.* 
  
 
 CumCh0 Cumulative amount of solute removed from the flow region by zero-order reactions (positive when 

removed from the system), [ML-1] or [M]+. 

 CumCh1 Cumulative amount of solute removed from the flow region by first-order reactions, [ML-1] or [M]+. 

 CumChR Cumulative amount of solute removed from the flow region by root water uptake S, [ML-1] or [M]+. 

 CumChN Cumulative amount of solute being transferred to either kinetic adsorption sites (type-2 sorption sites), 
or to the immobile liquid region, [ML-1] or [M]+. 

 ChemS1 Cumulative solute flux across part of a boundary along which time-independent pressure heads and/or 
fluxes are imposed, including internal sink/sources (Kode(n)= ±1), [ML-1] or [M]+. 

 ChemS2 Cumulative solute flux across a potential seepage faces (Kode(n)= ±2), [ML-1] or [M]+. 

 ChemS3 Cumulative solute flux across part of a boundary along which the groundwater level, the bottom flux, or 
other time-dependent pressure head and/or flux is imposed (Kode(n)= ±3), [ML-1] or [M]+. 

 ChemS4 Cumulative total solute flux across the atmospheric boundary (Kode(n)= ±4), [ML-1] or [M]+. 

 ChemS5 Cumulative total solute flux across an internal or external boundary containing nodes for which 
Kode(n)= ±5, [ML-1] or [M]+. 

   .    . 
   .    . 
 ChemSN Cumulative total solute flux across an internal or external boundary containing nodes for which 

Kode(n)= ±NumKD, [ML-1] or [M]+. 

 qc1 Total solute flux across part of a boundary along which time-independent pressure heads and/or fluxes 
are imposed (Kode(n)= ±1), [ML-1T-1] or [MT-1]+. 

 qc2 Total solute flux across a potential seepage face (Kode(n)= ±2), [ML-1T-1] or [MT-1]+. 

 qc3 Total solute flux calculated across a boundary containing nodes for which Kode(n)= ±3 (i.e., along part 
of a boundary where the groundwater level, the bottom flux, or other time-dependent pressure head 
and/or flux is specified), [ML-1T-1] or [MT-1]+. 

 qc4 Total solute flux across the atmospheric boundary (Kode(n)= ±4), [ML-1T-1] or [MT-1]+. 

   .    . 
   .    . 
 qcN Total solute flux across an internal or external boundary containing nodes for which Kode(n)= 

±NumKD, [ML-1T-1] or [MT-1]+. 

 cMean1 Mean concentration across part of a boundary along which time-independent pressure heads and/or 
fluxes are imposed (Kode(n)= ±1) [ML-3]. 

   .    . 
 cMean N Mean concentration across an internal or external boundary containing nodes for which Kode(n)= 

±NumKD, [ML-3]. 
 
 
+ For plane (2D) and axisymmetric (or 3D) flow, respectively 
* The same output file is created for each solute from 1 to NS. Values of the solute flux and the cumulative solute flux 

are positive when solute is removed from the system. 
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 Table 11.6. BALANCE.OUT - mass balance variables. 
  
 
 Area (Volume) Area of the entire flow domain or a specified subregion, [L2] or [L3]+. 

 VolumeW Volume of water in the entire flow domain or in a specified subregion, [L2] or [L3]+. 

 InFlow Inflow/Outflow to/from the entire flow domain or to/from a specified subregion, [L2T-1] or [L3T-1]+. 

 hMean Mean pressure head in the entire flow domain or in a specified subregion [L]. 

 HeatVol Amount of heat in the entire flow domain or in a specified subregion, [MLT-2] or [ML2T-2]+. 

 TMean Mean temperature in the entire flow domain or in a specified subregion [K]. 

 ConcVol Amount of solute in the entire flow domain or in a specified subregion. This variable is given for all 
solutes from 1 to NS, [ML-1] or [M]+. 

 cMean Mean concentration in the entire flow domain or in a specified subregion. This variable is given for all 
solutes from 1 to NS [ML-3]. 

 ConcVlIm Amount of solute in the entire flow domain or in a specified subregion in the non-equilibrium phase 
(solute in the immobile water or kinetically sorbed solute). This variable is given for all solutes from 1 
to NS, [ML-1] or [M]+. 

 SorbVlIm Amount of kinetically sorbed solute in the entire flow domain or in a specified subregion. This variable 
is given for all solutes from 1 to NS (for 3D applications), [L2] or [L3]+. 

 cMeanIm Mean concentration in the entire flow domain or in a specified subregion in the non-equilibrium phase 
(solute in the immobile water), [ML-3]. This variable is given for all solutes from 1 to NS. 

 sMeanIm Mean concentration in the entire flow domain or in a specified subregion in the non-equilibrium phase 
(kinetically sorbed solute), [MM-1]. This variable is given for all solutes from 1 to NS. 

 WatBalT Absolute error in the water mass balance of the entire flow domain, [L2] or [L3]+. 

 WatBalR Relative error in the water mass balance of the entire flow domain [%]. 

 CncBalT Absolute error in the solute mass balance of the entire flow domain. This variable is given for all solutes 
from 1 to NS, [ML-1] or [M]+. 

 CncBalR Relative error in the solute mass balance of the entire flow domain. This variable is given for all solutes 
from 1 to NS [%]. 

  
 
+ For plane (2D) and axisymmetric (or 3D) flow, respectively 
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 Table 11.7. A_LEVEL.OUT - mean pressure heads and total cumulative fluxes.* 
  
 
 CumQAP Cumulative total potential flux across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 

 CumQRP Cumulative total potential transpiration rate, [L2] or [L3]+. 

 CumQA Cumulative total actual flux across the atmospheric boundary (Kode(n)=±4), [L2] or [L3]+. 

 CumQR Cumulative total actual transpiration rate, [L2] or [L3]+. 

 CumQ3 Cumulative total bottom or other flux across a boundary along which the groundwater level, the bottom 
flux, or other time-dependent pressure head and/or flux is imposed (Kode(n)=±3), [L2] or [L3]+. 

 hAtm Mean value of the pressure head calculated over a set of nodes for which Kode(n)=±4 [L]. 

 hRoot Mean value of the pressure head over a region for which Beta(n)>0 (i.e., the root zone) [L]. 

 hKode3 Mean value of the pressure head over a set of nodes for which Kode(n)=±3 [L]. 

  
 
+ For plane (2D) and axisymmetric (or 3D) flow, respectively 
* Boundary fluxes are positive when water is removed from the system. 
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 Table 11.8. FIT.OUT - information related to parameter estimation. 
  
 
 SSQ Value of the objective function Φ being minimized during the parameter optimization process. 

 S.E.Coeff Standard error. 

 RSQUARE r2 value for regression of observed versus fitted values. 

 Quantity Measured data, e.g., the pressure head, water content, cumulative flux. 

 Type Type of measured data (see Table 10.13). 

 Position Position of the measurement (see Table 10.13). 

 Weight Weight associated with a particular data point. 

 Residual Residual between measured and fitted quantity. 
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